

UNIVERSITY OF CALICUT

<u>Abstract</u>

General and Academic IV - Faculty of Science- Modified Scheme and Syllabus of B.Sc Mathematics Honours Programme, with effect from 2024 admission, in tune with the CUFYUGP Regulations 2024 - Approved- Implemented - Orders Issued

G	&	Α	-	IV	-	J

U.O.No. 18273/2024/Admn

IV-J

Dated, Calicut University.P.O, 07.12.2024

Read:-1. U.O.No. 14567/2024/Admn dated 25.09.2024

2. item no.2 in the minutes of the meeting of the Board of Studies in Mathematics UG held on 20.07.2024.

- 3. Minutes of CUFYUGP Steering Committee meeting held on 23.10.2024.
- 4. Minutes of the meting of the Board of Studies in Mathematics UG held on 28.11.2024.
- 5. Remarks of the Dean, Faculty of Science dated 03.12.2024.
- 6. Orders of the Vice Chancellor in the file of even no and dated 05.12.2024.

<u>ORDER</u>

- 1. The Scheme and Syllabus of B.Sc Mathematics Honours programme in tune with CUFYUGP Regulations 2024 was implemented with effect from 2024 Admission, vide paper read (1) above.
- 2. Vide paper read (2) above, the Board of Studies in Mathematics (UG submitted a proposal to adopt objective-oriented questions alone for setting the question paper for MDC courses Mathematics for Competitive Examinations I & II, based on the nature of the subject.
- 3. Vide paper read (3) above, the CUFYUGP Steering Committee resolved to permit the request of Board of Studies in Mathematics (UG) for the adoption of objective oriented questions for setting the question paper for the MDC courses Mathematics for Competitive Examinations I & II, from 2025 admission onwards and to follow the existing question paper pattern for 2024 admission, in accordance with CUFYUGP Regulations.
- 4. Accordingly, the Board of Studies in Mathematics (UG), vide paper read (4), approved the modified syllabus of B.Sc Mathematics Honours programme, with the Model Question papers for Multi Disciplinary Courses (MDC), MAT1FM105(2) Mathematics for Competitive Examinations Part I and MAT2FM106(2) Mathematics for Competitive Examinations Part I modified as per the pattern provided in CUFYUGP Regulations, with effect from 2024 admission.
- 5. The Dean, Faculty of Science, vide paper read (5), approved the recommendation of the Board of Studies in Mathematics (UG).
- 6. The Vice Chancellor has approved the above recommendation and accorded sanction to implement the modified scheme and syllabus of B.Sc Mathematics Honours programme with effect from 2024 admission, in tune with the CUFYUGP Regulations 2024, exercising the powers as per clause 10(13) of Calicut University Act 1975.
- 7. The modified Scheme and Syllabus of B.Sc Mathematics Honours programme in tune with CUFYUGP Regulations 2024, is thus implemented with effect from 2024 admission.
- 8. U.O.No. 14567/2024/Admn dated 25.09.2024 stands modified to this extent.
- 9. Orders are issued accordingly. (Modified Syllabus appended).

Arsad M

Deputy Registrar

Copy to: PS to VC/PA to PVC/ PA to Registrar/PA to CE/DR, DOA/JCE I/JCE IV/DoA/EX and EG Sections/GA I F/CHMK Library/Information Centres/SF/DF/FC

Forwarded / By Order

Section Officer

UNIVERSITY OF CALICUT

B.Sc. MATHEMATICS HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS

w.e.f. 2024 Admission Onwards

(CUFYUGP Regulations 2024)

CONTENTS

Scheme of Syllabus	2
Evaluation Scheme	31
Major Core Courses	
First Year	45
Second Year	53
Third Year	78
Fourth Year	103
Elective Courses	
Specialization in Mathematical Computing	135
Specialization in Data Science	150
Other Elective Courses – Third Year	166
Elective Courses – Fourth Year	181
Research Methodology	212
Multi-Disciplinary Courses	
First Semester	218
Second Semester	222
Skill Enhancement Courses	
Double Major	233
For Pathways 1 – 4	239
For Pathways 1 – 5	243
Value Added Courses	
Third Semester	252
Fourth Semester	261
Vocational Minors	
Introduction to AI	269
Introduction to Data Science	291
Minor Courses	
Minor Group – I	315
Minor Group – II	327
Minor Group – III	339
Minor Group – IV	351
Minor Group – V	363
Minor Group – VI	372
Online Equivalent Courses	383
Model Question Papers	386

B.Sc. MATHEMATICS HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SCHEME OF SYLLABUS

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme at Calicut University, a student would:

PO1	Knowledge Acquisition:
	Demonstrate a profound understanding of knowledge trends and their impact
	on the chosen discipline of study.
PO2	Communication, Collaboration, Inclusiveness, and Leadership:
	Become a team player who drives positive change through effective
	communication, collaborative acumen, transformative leadership, and a
	dedication to inclusivity.
PO3	Professional Skills:
	Demonstrate professional skills to navigate diverse career paths with
	confidence and adaptability.
PO4	Digital Intelligence:
	Demonstrate proficiency in varied digital and technological tools to understand and interact with the digital world, thus effectively processing complex
	information.
PO5	Scientific Awareness and Critical Thinking:
	Emerge as an innovative problem-solver and impactful mediator, applying
	scientific understanding and critical thinking to address challenges and advance sustainable solutions.
PO6	Human Values, Professional Ethics, and Societal and Environmental
100	Responsibility:
	Become a responsible leader, characterized by an unwavering commitment to
	human values, ethical conduct, and a fervent dedication to the well-being of
PO7	society and the environment.
rU/	Research, Innovation, and Entrepreneurship:
	Emerge as a researcher and entrepreneurial leader, forging collaborative
	partnerships with industry, academia, and communities to contribute enduring
	solutions for local, regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the B.Sc. Mathematics Honours Programme at Calicut University, a student would:

	Programme Specific Outcome (Major)
PSO1	Advanced Mathematical Knowledge: Understand core mathematical
	abstract concepts/theories and demonstrate a high level of mathematical
	rigor and logical reasoning
PSO2	Modelling and Problem-Solving Skills: Apply mathematical techniques
	to solve complex problem situations across various domains and
	interpret the result, demonstrating critical thinking and analytical skills.
PSO3	Computational Proficiency: Apply mathematical understanding to solve
	problems and explicitly work out step by step either by self or by
	software based computational tools.
PSO4	Research Aptitude: Analyse mathematical abstract ideas effectively and
	present/communicate mathematical arguments and solutions in a clear
	and coherent manner leading to research in Mathematics
	Programme Specific Outcome (Minor)
PSO5	Mathematics Proficiency: Demonstrate a strong understanding of
	mathematical principles and problem solving
PSO6	Interdisciplinary Integration: Integrate Mathematics with relevant
	disciplines to develop more holistic approaches to solve problems,
	leading to innovative solutions and advancements in various fields.

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS

Sl. No.	Academic Pathway	4 cr	Minor/ Other Disciplin es ourse has edits	Foundation Courses AEC: 4 MDC: 3 SEC: 3 VAC: 3 Each course has 3 credits	Intern- ship	Total Credits	Example
1	Single Major (A)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Mathematics + six courses in different disciplines in different combinations
2	Major (A) with Multiple Discipline s (B, C)	68 (17 courses)	12 + 12 (3 + 3 = 6 courses)	39 (13 courses)	2	133	Major: Mathematics + Statistics and Computer Science
3	Major (A) with Minor (B)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Mathematics Minor: Physics
4	Major (A) with Vocational Minor (B)	68 (17 courses)	24 (6 courses)	39 (13 courses)	2	133	Major: Mathematics Vocational Minor: Data Analysis
5	Double Major	A: 48	-	12 + 9+9 +9	2	133	

IN THE THREE-YEAR PROGRAMME IN CUFYUGP

(A, B)	(12 courses)	The 24 credits in the Minor stream are distributed between the two Majors.		Mathematics and Physics double major
	B: 44	5		5
	(11	2 MDC, 2 SEC, 2 VAC and the		
	courses)	Internship should be in Major A.		
		Total credits in Major A should be		
		48 + 20 = 68 (nearly 50% of 133)		
		1 MDC, 1 SEC and 1 VAC should be in Major B. Total credits in Major B should be $44 + 9 = 53$ (40% of 133)		
Exit	with UG D	egree / Proceed to Fourth Year with	133 Credi	ts

B.Sc. MATHEMATICS HONOURS PROGRAMME

COURSE STRUCTURE

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Total Hours	Hours/ Week	Credits		Marks	
Sem						Internal	External	Total
1	MAT1CJ101/ MAT1MN100	Core Course 1 in Major – Differential Calculus	60	4	4	30	70	100
		Minor Course 1	60/ 75	4/5	4	30	70	100
		Minor Course 2	60/ 75	4/5	4	30	70	100
	ENG1FA101 (2)	Ability Enhancement Course 1– English	30+30	2+2	2+1	25	50	75
			(T+P)	(T+P)	(T+P)			
		(with Theory T & Practicum P)						
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 1 – Other than Major	45	3	3	25	50	75
		Total		22/ 24	21			525
2	MAT2CJ101/ MAT2MN100	Core Course 2 in Major – Integral Calculus	60	4	4	30	70	100
		Minor Course 3	60/ 75	4/5	4	30	70	100
		Minor Course 4	60/ 75	4/5	4	30	70	100
	ENG2FA103 (2)	Ability Enhancement Course 3– English	30+30	2+2	2+1	25	50	75

		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 2 – Other than Major	45	3	3	25	50	75
		Total		22/24	21			525
3	MAT3CJ201	Core Course 3 in Major– Multivariable Calculus (with Theory T & Practicum P)	45+30 (T+P)		3+1 (T+P)	30	70	100
	MAT3CJ202/ MAT3MN200	Core Course 4 in Major– Matrix Algebra	60	4	4	30	70	100
		Minor Course 5	60/ 75	4/5	4	30	70	100
		Minor Course 6	60/ 75	4/5	4	30	70	100
		Multi-Disciplinary Course 3 – Kerala Knowledge System	45	3	3	25	50	75
	ENG3FV108 (2)	Value-Added Course 1 – English	45	3	3	25	50	75
		Total		23/25	22			550
4	MAT4CJ203	Core Course 5 in Major –Real Analysis I	45+30	3+2	3+1	30	70	100
	MAT4CJ204	Core Course 6 in Major – Basic Linear Algebra	60	4	4	30	70	100
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (with Theory T & Practical P)	45+30 (T+P)		3+1 (T+P)	30	70	100

	ENG4FV109 (2)	Value-Added Course 2 – English	45	3	3	25	50	75
		Value-Added Course 3 – Additional Language	45	3	3	25	50	75
	ENG4FS111(2)	Skill Enhancement Course 1 – English	30+30	2+2	2+1	25	50	75
		Total		24	21			525
5	MAT5CJ301	Core Course 8 in Major –Real Analysis II	45+30	3+2	3+1	30	70	100
	MAT5CJ302	Core Course 9 in Major –Abstract Algebra I	60	4	4	30	70	100
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	60	4	4	30	70	100
		Elective Course 1 in Major	60	4	4	30	70	100
		Elective Course 2 in Major	60	4	4	30	70	100
		Skill Enhancement Course 2	45	3	3	25	50	75
		Total		24	23			575
6	MAT6CJ304/ MAT8MN304	Core Course 11 in Major – Complex Analysis II	60	4	4	30	70	100
	MAT6CJ305/ MAT8MN305	Core Course 12 in Major – Elementary Number Theory	60	4	4	30	70	100
	MAT6CJ306/ MAT8MN306	Core Course 13 in Major – Methods of Differential Equations	60	4	4	30	70	100
		Elective Course 3 in Major	60	4	4	30	70	100
		Elective Course 4 in Major	60	4	4	30	70	100

	MAT6FS113 (1) <i>or</i> MAT6FS113 (2)	Skill Enhancement Course 3 – Data Science with Python <i>or</i> Scientific Principles & Practice	45	3	3	25	50	75
	MAT6CJ349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
		Total		23	25			625
Total C	Credits for Three	e Years			133			3325
7	MAT7CJ401	Core Course 14 in Major – Mathematical Analysis	45+30	3+2	3+1	30	70	100
	MAT7CJ402	Core Course 15 in Major –General Topology	45+30	3+2	3+1	30	70	100
	MAT7CJ403	Core Course 16 in Major – Abstract Algebra II	45+30	3+2	3+1	30	70	100
	MAT7CJ404	Core Course 17 in Major – Linear Algebra	45+30	3+2	3+1	30	70	100
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	45+30	3+2	3+1	30	70	100
		Total		25	20			500
8	MAT8CJ406 / MAT8MN406	Core Course 19 in Major – Basic Measure Theory	45+30	3+2	3+1	30	70	100
	MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	60	4	4	30	70	100
	MAT8CJ408 / MAT8MN408	Core Course 21 in Major – Differential Equations	60	4	4	30	70	100
	OR (instead of	Core Courses 19 to 21 in	Major)					

MAT8CJ449	Project (in Honours programme)	360*	13*	12	90	210	300
OR (instead of	Core Courses 19 to 21 in	Major)					•
MAT8CJ499	Project (in Honours with Research programme)	360*	13*	12	90	210	300
	Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100
	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100
	Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100
OR (instead of Programme)	Elective Course 7 in Maj	or, in th	ne case (of Hono	ours with	Researc	h
MAT8CJ489	Research Methodology in Mathematics	60	4	4	30	70	100
	Total		25	24			600
Total	Credits for Four Years	•	-	177			4425

*

The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

CREDIT DISTRIBUTION FOR PATHWAYS 1 – 4

1. Single Major

3. Major with Minor

2. Major with Multiple Disciplines

5. Major with			4. Major with vocational Minor					
Semester	Major Courses	Minor Courses	General Foundation Courses	Internship/ Project	Total			
1	4	4 + 4	3 + 3 + 3	-	21			
2	4	4 + 4	3 + 3 + 3	-	21			
3	4 + 4	4 + 4	3 + 3	-	22			
4	4 + 4 + 4	-	3 + 3 + 3	-	21			
5	4 + 4 + 4 + 4 + 4 + 4	-	3	-	23			
6	4 + 4 + 4 + 4 + 4 + 4	-	3	2	25			
Total for Three	68		39		133			
Years		24		2				
7	4 + 4 + 4 + 4 + 4 + 4	-	-	-	20			
8	4 + 4 + 4	4 + 4 + 4	-	12*	24			
	*	Instead of thr	ee Major course	S				
Total for	88 + 12 = 100		39		177			
Four Years		36		2				

4. Major with Vocational Minor

DISTRIBUTION OF MAJOR COURSES IN Mathematics

FOR PATHWAYS 1-4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Hours/ Week	Credits
1	MAT1CJ101 /MAT1MN100	Core Course 1 in Major – Differential Calculus	4	4
2	MAT2CJ101 /MAT2MN100	Core Course 2 in Major – Integral Calculus	4	4
3	MAT3CJ201	Core Course 3 in Major – Multivariable Calculus	5	4
	MAT3CJ202 /MAT3MN200	Core Course 4 in Major – Matrix Algebra	4	4
4	MAT4CJ203	Core Course 5 in Major – Real Analysis I	5	4
	MAT4CJ204	Core Course 6 in Major – Basic Linear Algebra	4	4
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (P)	5	4
5	MAT5CJ301	Core Course 8 in Major – Real Analysis II	5	4
	MAT5CJ302	Core Course 9 in Major – Abstract Algebra I	4	4
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	4	4
		Elective Course 1 in Major	4	4
		Elective Course 2 in Major	4	4
6	MAT6CJ304 / MAT8MN304	Core Course 11 in Major – Complex Analysis II	4	4

	MAT6CJ305 /MAT8MN305	Core Course 12 in Major – Elementary Number Theory	4	4
	MAT6CJ306 /MAT8MN306	Core Course 13 in Major – Methods of Differential Equations	4	4
		Elective Course 3 in Major	4	4
		Elective Course 4 in Major	4	4
	MAT6CJ349	Internship in Major	-	2
	Total	for the Three Years		70
	MAT7CJ401	Core Course 14 in Major - Mathematical Analysis	5	4
	MAT7CJ402	Core Course 15 in Major – General Topology	5	4
7	MAT7CJ403	Core Course 16 in Major – Abstract Algebra II	5	4
	MAT7CJ404	Core Course 17 in Major – Linear Algebra	5	4
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	5	4
	MAT8CJ406 / MAT8MN406	Core Course 19 in Major – Basic Measure Theory	5	4
	MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	4	4
	MAT8CJ408 / MAT8MN408	Core Course 21 in Major – Differential Equations	4	4
		OR (instead of Core Courses 19 - 21 in	Major)	1
	MAT8CJ449	Project (in Honours programme)	13	12
	MAT8CJ499	Project (in Honours with Research programme)	13	12
		Elective Course 5 in Major	4	4
		Elective Course 6 in Major	4	4

		Elective Course 7 in Major	4	4
8	OR (inste	ad of Elective course 7 in Major, in Honc programme)	ours with R	esearch
	MAT8CJ489	Research Methodology in Mathematics	4	4
	Total	for the Four Years		114

ELECTIVE COURSES IN MATHEMATICS WITH SPECIALISATION

	Sl.	Course	Title			X			Marks	
Group No.	No	Code		Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1			MATHE	MA	ТІСА	L CO	MPUTI	NG		
	1	MAT5EJ301 (1)	Mathematical Foundations of Computing	5	60	4	4	30	70	100
	2	MAT5EJ302 (1)	Data Structures and Algorithms	5	60	4	4	30	70	100
	3	MAT6EJ301 (1)	Numerical Analysis	6	60	4	4	30	70	100
	4	MAT6EJ302 (1)	Mathematics for Digital Images	6	60	4	4	30	70	100
2	I			TAC			F∻			
2						IENC				
	1	MAT5EJ303 (2)	Convex Optimization	5	60	4	4	30	70	100
	2	MAT5EJ304 (2)	Machine Learning I	5	60	4	4	30	70	100
	3	MAT6EJ303 (2)	Applied Probability	6	60	4	4	30	70	100
	4	MAT6EJ304 (2)	Machine Learning II	6	60	4	4	30	70	100

Sl.	Course	Title	SL	LS				Marks	
No	Code		Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1	MAT5EJ305	Higher Algebra.	5	60	4	4	30	70	100
2	MAT5EJ306	Linear Programming	5	60	4	4	30	70	100
3	MAT6EJ305	Topology of Metric Spaces.	6	60	4	4	30	70	100
4	MAT6EJ306	Introduction to Fourier Analysis	6	60	4	4	30	70	100
5	MAT8EJ401	Advanced Topology	8	60	4	4	30	70	100
6	MAT8EJ402	Partial Differential Equations	8	60	4	4	30	70	100
7	MAT8EJ403	Rings and Modules	8	60	4	4	30	70	100
8	MAT8EJ404	Coding Theory	8	60	4	4	30	70	100
9	MAT8EJ405	Axiomatic Foundations of Mathematics	8	60	4	4	30	70	100
10	MAT8EJ406	Operations Research	8	60	4	4	30	70	100
11	MAT8EJ407	Cryptography	8	60	4	4	30	70	100
12	MAT8EJ408	Introduction to Fractals	8	60	4	4	30	70	100

ELECTIVE COURSES IN MATHEMATICS WITH NO SPECIALISATION

*All elective courses, with specialization or non-specialization may be considered as part of a single pool. You may choose any course from this pool based on semester code.

GROUPING OF MINOR COURSES IN MATHEMATICS

									Ma	rks
Group No.	SI. No.	Course Code	Title	Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1			Minor Group I - Mathema	tical M	lethod	s for Sc	ience	1		
	1	MAT1MN101	Calculus	1	60	4	4	30	70	100
	2	MAT2MN101	Differential Equations and Matrix Theory	2	60	4	4	30	70	100
	3	MAT3MN201	Calculus of Several Variables	3	60	4	4	30	70	100
2			Minor Group II – Foundations	for Ma	thema	tical Ap	oplicat	tions		
	1	MAT1MN102	Calculus of a Single Variable	1	60	4	4	30	70	100
	2	MAT2MN102	Calculus and Matrix Algebra	2	60	4	4	30	70	100
	3	MAT3MN202	Differential Equations and Fourier Series	3	60	4	4	30	70	100
3			Minor Group III - Integrate	ed Mat	hemat	ical Me	thods			
	1	MAT1MN103	Basic Calculus	1	60	4	4	30	70	100
	2	MAT2MN103	Analysis and Some Counting Principles	2	60	4	4	30	70	100
	3	MAT3MN203	Matrix Algebra and Vector Calculus	3	60	4	4	30	70	100

4			Minor Group IV – Foundatio	ons of]	Discre	te Math	nemati	cs		
			i		i	1	i			
	1	MAT1MN104	Mathematical Logic, Set Theory and Combinatorics	1	60	4	4	30	70	100
	2	MAT2MN104	Graph theory and Automata	2	60	4	4	30	70	100
	3	MAT3MN204	Boolean Algebra and System of Equations	3	60	4	4	30	70	100
					•		•	•		
			Minor Crown V	Tinaa		- h				
			Minor Group V –	- Linea	Ir Alge	eora				
	1	MAT1MN105	Matrix Theory	1	60	4	4	30	70	100
	2	MAT2MN105	Vector Spaces and Linear Transformations	2	60	4	4	30	70	100
	3	MAT3MN205	Optimization Techniques	3	60	4	4	30	70	100
			Minor Group VI – Mat	hemat	ical Eo	conomi	cs			
	1	MAT1MN106	Principles of Micro Economics	1	60	4	4	30	70	100
	2	MAT2MN106	Optimization Techniques in Economics	2	60	4	4	30	70	100
	3	MAT3MN206	Applied Mathematics for Economic Analysis	3	60	4	4	30	70	100

* Students from other disciplines can choose up to one group (comprising three courses in total) from the first three options, as these groups share partially overlapping topics. Hence, they can either choose one group from groups 1, 2, and 3, and a second from groups 4, 5, and 6, or select two groups from groups 4, 5, and 6 altogether.

** Students from major mathematics can enrol only in minor group VI.

GROUPING OF VOCATIONAL MINOR COURSES IN MATHEMATICS

		VOCA	TIONAL MATH	IEMA	TICS	- DAT	A ANAI	LYTICS		
		le							Marks	
Group No.	SI. No.	Course Code	Title	Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1				Int	roduct	tion to	AI		•	
	1	MAT1VN 101	Python Programming	1	75	5	4	30	70	100
	2	MAT2VN 101	Linear Algebra for Machine Learning	2	75	5	4	30	70	100
	3	MAT3VN 201	Introduction to Machine Learning	3	75	5	4	30	70	100
	4	MAT8VN 401	Introduction to Artificial Intelligence	8	75	5	4	30	70	100
	1									
2			Intro	ductio	on to E	Data So	eience			
	1	MAT1VN 102	Statistics for Data Science	1	75	5	4	30	70	100
	2	MAT2VN 102	R Programming	2	75	5	4	30	70	100
	3	MAT3VN 202	Data Mining	3	75	5	4	30	70	100
	4	MAT8VN 402	Data Visualization	8	75	5	4	30	70	100

(i). Students in Single Major pathway can choose course/courses from any of the Minor/ Vocational Minor groups offered by a discipline other than their Major discipline.

(ii). Students in the Mathematics with Multiple Disciplines pathway who wish to choose a minor from within the same department are limited to selecting only the sixth minor group

namely Mathematical Economics. For their second multiple discipline choice, students must select a Minor or Vocational Minor group offered by a discipline other than mathematics. If students opt for Mathematical Economics, the same will serve as their multiple discipline title.

(iii). Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by a discipline other than their Major discipline. If the students from other major disciplines choose any two Minor groups in Mathematics as given above, then the title of the Minor will be Mathematics.

(iv). Students in Major with Vocational Minor pathway can choose all the courses from any two Vocational Minor groups offered by a discipline other than their Major discipline. If the students from other Major disciplines choose any two Vocational Minor groups in Mathematics as given above, then the title of the Vocational Minor will be Data Analytics.

	de	le		sek.]	Marks	
Semester	Course Code	Course Title	Total Hours	Hours / Week	Credits	Internal	External	Total
1	MAT1FM105(1)	Multi-Disciplinary Course 1: Matrices and Basics of Probability theory	45	3	3	25	50	75
1	MAT1FM105(2)	Multi-Disciplinary Course 2: Mathematics for Competitive Examinations - Part I	45	3	3	25	50	75
2	MAT2FM106(1)	Multi-Disciplinary Course 3: Graph Theory and LPP	45	3	3	25	50	75
2	MAT2FM106(2)	Multi-Disciplinary Course 4: Mathematics for Competitive Examinations - Part II	45	3	3	25	50	75

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN MATHEMATICS

3	MAT3FV109(1)	Value-Added Course 1: History of Mathematics	45	3	3	25	50	75
3	MAT3FV109(2)	Value-Added Course 1: Computational Logic	45	3	3	25	50	75
4	MAT4FV110(1)	Value-Added Course 2: Statistics and Mathematics with R	45	3	3	25	50	75
4	MAT4FV110(2)	Value-Added Course 2: The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
4	MAT4FS111	Skill Enhancement Course 1 for Double Major pathway: Introduction to Python and Scientific Computing	45	3	3	25	50	75
5	MAT5FS112	Skill Enhancement Course 2: Mathematical Type Setting System – LaTeX (for pathways1 – 4)	45	3	3	25	50	75
6	MAT6FS113 (1)	Skill Enhancement Course 2/3 : Data Science with Python						
6	MAT6FS113 (2)	Skill Enhancement Course 2/3 : Scientific Principles & Practice	45	3	3	25	50	75

COURSE STRUCTURE FOR BATCH A1(B2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

er	Course Code	Course Title	Total Hours	Hours/ Week	Credi ts		Mark	s
Semester						Internal	External	Total
1	MAT1CJ 101 / MAT1MN100	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100
		Core Course 1 in Major B	60/ 75	4/5	4	30	70	100
	MAT1CJ102 / MAT2CJ102 / MAT6CJ305*	Core Course 2 in Major Mathematics – Elementary Number Theory (for batch A1 only)	60	4	4	30	70	100
	ENG1FA101(2)	Ability Enhancement Course 1 – English	30+30	2+2	2+1	25	50	75
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
	MAT1FM105(1) Or MAT1FM105(2)	Multi-Disciplinary Course 1 in Mathematics – Matrices and Basics of Probability theory <i>Or</i> Mathematics for Competitive Exams – Part I (for batch A1 only)	45	3	3	25	50	75
		Total		22/23	21			525

2	MAT2CJ101 / MAT2MN100	Core Course 3 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
		Core Course 2 in Major B	60/ 75	4/5	4	30	70	100
		Core Course 3 in Major B – (for batch B2 only)	60/ 75	4/5	4	30	70	100
	ENG2FA103(2)	Ability Enhancement Course 3 – English	30+30	2+2	2+1	25	50	75
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
	MAT2FM106(1)/ MAT3FM106(1) <i>Or</i> MAT2FM106(2)/ MAT3FM106(2)	Multi-Disciplinary Course 2 in Mathematics – Graph Theory and LPP <i>Or</i> Mathematics for Competitive Exams – Part II	45	3	3	25	50	75
		Total		22 / 24	21			525
3	MAT3CJ201	Core Course 4 in Major Mathematics – Multivariable Calculus.	45+30	3+2	2+2	30	70	100
	MAT3CJ202/ MAT3MN200	Core Course 5 in Major Mathematics – Matrix Algebra	60	4	4	30	70	100
		Core Course 4 in Major B	60/ 75	4/5	4	30	70	100
		Core Course 5 in Major B	60/ 75	4/5	4	30	70	100
	BBB3FM106 / BBB2FM106	Multi-Disciplinary Course 1 in B	45	3	3	25	50	75

	MAT3FV109(1) Or MAT3FV109(2)	Mathematics – History of Mathematics <i>Or</i> Computational Logic (for batch A1 only)		3	3	25	50	75
		Total		23 / 25	22			550
4	Mathematics – Real Analysis - I		45+30	3+2	2+2	30	70	100
			60/ 75	4/5	4	30	70	100
			60	4	4	30	70	100
			45	3	3	25	50	75
	BBB4FV110	Value-Added Course 1 in B	45	3	3	25	50	75
	MAT4FS111/ MAT5FS111 Skill Enhancement Course 1 in Mathematics – Introduction to Python and Scientific Computing (The contents of this course are part of MAT4CJ205, so classes can be shared if necessary)		45	3	3	25	50	75
		Total		23/24	21			525
5	MAT5CJ301	Core Course 8 in Major Mathematics – Real Analysis II	45+30	3+2	2+2	30	70	100
		Core Course 7 in Major B –	60/ 75	4/5	4	30	70	100
	MAT5CJ302	Core Course 9 in Major Mathematics - Abstract Algebra I (for batch A1 only)	60	4	4	30	70	100

		Elective Course 1 in Major Mathematics	60	4	4	30	70	100									
		Elective Course 1 in Major B	60	4	4	30	70	100									
	BBB5FS112 / BBB4FS112	Skill Enhancement Course 1 in B	45	3	3	25	50	75									
		Total		24/25	23			575									
6	MAT6CJ304 / MAT8MN304	Core Course 10 in Major Mathematics – Complex Analysis II	60	4	4	30	70	100									
		Core Course 8 in Major B –	60/ 75	4/5	4	30	70	100									
		Core Course 9 in Major B – (for batch B2 only)	60	4	4	30	70	100									
		Elective Course 2 in Major Mathematics	60	4	4	30	70	100									
		Elective Course 2 in Major B	60	4	4	30	70	100									
	MAT6FS113(1) or MAT6FS113 (2)	<i>r</i> Mathematics – Data Science with		3	3	25	50	75									
	MAT6CJ349	Internship in Major Mathematics (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	_	50									
		Total		24/ 25	25			625									
		Total Credits for Three Years			133			3325									
	4, except that the n of courses in the tv	umber of the core and elective course vo categories completed at the end of	s is in c semeste	ontinua er 6.		· ·	-	For batch A1(B2), the course structure in semesters 7 and 8 is the same as for pathways 1 – 4, except that the number of the core and elective courses is in continuation of the number of courses in the two categories completed at the end of semester 6. * The course code of the same course as used for the pathways 1 – 4									

CREDIT DISTRIBUTION FOR BATCH A1 (B2)

IN PATHWAY 5: DOUBLE MAJOR

Semester 3	Major Courses in Mathematics 4+4 4 4+4	General Foundation Courses in Mathematics 3 3 3 3	Internship/ Project in Mathematics - - -	Majo Courses in B 4 4+4 4+4	General Foundation Courses in B - - 3	AEC 3+3 3+3 -	Tota 1 21 21 22
4	4 + 4	3 + 3	-	4	3	-	21
5	4 + 4 + 4	-	-	4+4	3	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total	48	18	2	44	9	12	133
for Three Years		68			53	12	133
						1	
	Major Courses in Mathematics	Minor Courses					
7	4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
		* Instead	of three Major	courses			
Total for Four Years	88 + 12 = 100	12					177

COURSE STRUCTURE FOR BATCH B1(A2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

Note: Unless the batch is specified, the course is for all the students of the class

r	Course Code	Course Title	Total Hours	Hours/ Week	Credits	ľ	Mark	s
Semester						Internal	External	Total
1	MAT1CJ 101/ MAT1MN100	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100
		Core Course 1 in Major B 60		4/5	4	30	70	100
		Core Course 2 in Major B (for batch B1 only)	60/ 75	4/5	4	30	70	100
	ENG1FA101(2)	Ability Enhancement Course 1 – English	60	4	3	25	50	75
	Ability Enhancement Course 2 – Additional Language		45	3	3	25	50	75
	BBB1FM105	Multi-Disciplinary Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
		Total		22 / 24	21			525
2	MAT2CJ101 / MAT2MN100	Core Course 2 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
		Core Course 3 in Major B –	60/ 75	4/5	4	30	70	100
	MAT2CJ102 / MAT1CJ102/ MAT6CJ305*	Core Course 3 in Major Mathematics – Elementary Number Theory (for batch A2 only).	60	4	4	30	70	100

	ENG2FA103(2)	Ability Enhancement Course 3 – English	60	4	3	25	50	75	
		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75	
	MAT2FM106(1)/ MAT3FM106(1) <i>Or</i> MAT2FM106(2)/ MAT3FM106(2)	Multi-Disciplinary Course 1 in Mathematics – Graph Theory and LPP <i>Or</i> Mathematics for Competitive Exams – Part II	45	3	3	25	50 75 50 75 70 525 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 70 50 75 50 75		
		Total		24/25	21			525	
3	MAT3CJ201	Core Course 4 in Major Mathematics – Multivariable Calculus	45+30	3+2	3+1	30	70	100	
	MAT3CJ202/ MAT3MN200	Core Course 5 in Major Mathematics – Matrix Algebra	60	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		Core Course 4 in Major B	60/ 75	4/5	4	30	70	100	
		Core Course 5 in Major B	60/ 75	4/5	4	30	70	100	
	BBB3FM106 /BBB2FM106	Multi-Disciplinary Course 2 in B –	45	3	3	25	50	75	
	BBB3FV108	Value-Added Course 1 in B – (for batch B1 only)	45	3	3	25	50	75	
		Total		23/25	22			550	
4	MAT4CJ203	Core Course 6 in Major Mathematics – Real Analysis - I	45+30	3+2	3+1	30	70	100	
		Core Course 6 in Major B	60/ 75	4/5	4	30	70	100	
		Core Course 7 in Major B – (for batch B1 only)	60/ 75	4/5	4	30	70	100	

	MAT4FV110(1) <i>Or</i> MAT4FV110(2)	Value-Added Course 1 in Mathematics – Statistics and Mathematics with R <i>Or</i> The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
		Value-Added Course 2 in B –	45	3	3	25	50	75
	MAT4FS111/ MAT5FS111	Skill Enhancement Course 1 in Mathematics – Introduction to Python and Scientific Computing (The contents of this course are part of MAT4CJ205, so classes can be shared if necessary)	45	4	3	25	50	75
		Total		22 / 24	21			525
5	MAT5CJ302	Core Course 7 in Major Mathematics – Abstract Algebra I	60	4	4	30	70	100
		Core Course 8 in Major B –	60/ 75	4/5	4	30	70	100
		Core Course 9 in Major B – (for batch B1 only)	60	4	4	30	70	100
		Elective Course 1 in Major Mathematics	60	4	4	30	70	100
		Elective Course 1 in Major B	60	4	4	30	70	100
	BBB5FS112 / BBB4FS112	Skill Enhancement Course 1 in B	45	3	3	25	50	75
		Total		24/25	23			575
6	MAT6CJ304 / MAT8MN304	Core Course 8 in Major Mathematics – Complex Analysis II	60	4	4	30	70	100
		Core Course 10 in Major B –	60/ 75	4/5	4	30	70	100

MAT6CJ306/ MAT8MN306	Core Course 9 in Major Mathematics – Methods of Differential Equations (for batch A2 only)	60	4	4	30	70	100
	Elective Course 2 in Major Mathematics	60	4	4	30	70	100
	Elective Course 2 in Major B	60	4	4	30	70	100
BBB6FS113	Skill Enhancement Course 2 in B – (for batch B1 only)	45	3	3	25	50	75
BBB6CJ349	Internship in Major B (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
	Total		24/25	25			625
	Total Credits for Three Years	•	•	133			3325

To continue to study Mathematics in semesters 7 and 8, batch B1(A2) needs to earn additional 15 credits in Mathematics to make the total credits of 68. If this condition is achieved, and the student of batch B1(A2) proceeds to the next semesters to study Mathematics, then the course structure in semesters 7 and 8 is the same as for pathways 1 - 4, except that the number of the core and elective courses is in continuation of the number of courses in the two categories completed at the end of semester 6, taking into account the number of courses in Mathematics taken online to earn the additional 15 credits.

CREDIT DISTRIBUTION FOR BATCH B1(A2)

Semester	Major Courses in B	General Foundation Courses in B	Internship/ Project in B	Major Courses in Mathematics	General Foundation Courses in Mathematics	AEC	Total
1	4 + 4	3	-	4	_	3+3	21
2	4	-	-	4 + 4	3	3+3	21
3	4+4	3 + 3	-	4 + 4	-	-	22
4	4 + 4	3	-	4	3 + 3	-	21
5	4 + 4 + 4	3	-	4 + 4	-	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total	48	18	2	44	9	12	133
for Three Years		68	I	5	12	133	
	Major Courses in B	Minor Courses					
7	4 + 4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4 + 4 + 4	4 + 4 + 4	12*		-	-	24
	I	* In	stead of three	e Major courses			
Total for Four Years	88 + 12 = 100	12					177

IN PATHWAY 5: DOUBLE MAJOR

EVALUATION SCHEME

1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks are from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation Course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks are from internal evaluation and 50 marks, from external evaluation.

2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit Practical/Practicum.

In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

In 4-credit courses with 3-credit theory and 1-credit Practical/Practicum components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for Practical/Practicum. The Practical/Practicum component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.

3. All the 3-credit courses (General Foundational Courses) in Mathematics are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

Sl. No.	Nature of the Course		Internal Evaluation in Marks (About 30% of the Total)		External Exam	Total Marks
			Open-ended Module / Practical/Prac	On the other 4 Modules	on 4 Modules (Marks)	
			ticum		(WIAIKS)	
1	4-credit course	only theory	10	20	70	100
	course	(5 modules)				
2	4-credit course	Theory (4 modules)	20	10	70	100
		+				
		Practical/Pra cticum				
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

Sl.	Components of	Internal Marks for the Theory Part					
No.	Internal Evaluation of Theory Part of a	of a l	Major / Minor (Course of 4-credits			
	Major / Minor Course	Theory Only		Theory + Practical/Practicum			
		4 Theory Modules	Open-ended Module	4 Theory Modules	Practical/Pra cticum		
1	Test paper/ Mid-semester Exam	10	4	5	-		
2	Seminar/ Viva/ Quiz	6	4	3	-		
3	Assignment	4	2	2	-		
	20 10			10	20*		
	Total	30	0	30			

^{*} Refer the table in section 1.2 for the evaluation of Practical/Practicum component

1.2. EVALUATION OF PRACTICAL/PRACTICUM COMPONENT

The evaluation of Practical/Practicum component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of Practical/Practicum by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester Practical/Practicum examination and viva-voce, and the evaluation of Practical/Practicum records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of Practical/Practicum courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of Practical/Practicum component shall be as given below:

Sl. No.	Evaluation of Practical/Practicum Component	Marks for	Weightage
		Practical/Pra	0 0
	of Credit-1 in a Major / Minor Course	cticum	
1	Continuous evaluation of Practical/Practicum/	10	50%
	exercise performed in Practical/Practicum classes		
	by the students		
2	End-semester examination and viva-voce to be	7	35%
	conducted by teacher-in-charge along with an		
	additional examiner arranged internally by the		
	Department Council		
3	Evaluation of the Practical/Practicum records	3	15%
	submitted for the end semester viva-voce		
	examination by the teacher-in-charge and		
	additional examiner		
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

Duration	Туре	Total No. of	No. of	Marks for	Ceiling	
		Questions	Questions to be	Each	of	
			Answered	Question	Marks	
2 Hours	Short Answer	10	8-10	3	24	
	Paragraph/ Problem	8	6 - 8	6	36	
	Essay	2	1	10	10	
Total Marks						

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in Research Institutions, Universities, Firms, Industry or Organizations, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.

A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Mathematics or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In B.Sc. Mathematics Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical results, ideas, expressions, experimental conditions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- 7. The institution at which the Internship will be carried out should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

2.2. VALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evaluation of Internship		Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of internship through	Acquisition of skill set	10	40%
2	interim presentations and reports by the committee	Interim Presentation and Viva-voce	5	
3	internally constituted by the Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ S	tudy Tour	5	10%
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the committee internally	Presentation of the work	5	
7	constituted by the Department Council	Viva-voce	6	
8	Evaluation of the day-to-day records, the report of internship supervisor, and final report submitted for the end semester viva–voce examination before the committee internally constituted by the Department Council		8	15%
		Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution/ any other higher educational institution (HEI)/ research centre/ training centre.
- The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ ST/ OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-credits instead of three Core Courses in Major in semester 8.
- The approved research centres of University of Calicut or any other university/ HEI can offer the Honours with Research programme. The departments in the affiliated colleges under University of Calicut, which are not the approved research centres of the University, should get prior approval from the University to offer the Honours with Research programme. Such departments should have minimum two faculty members with Ph.D., and they should also have the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the University/ College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.

The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.

• If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME

AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Mathematics or allied disciplines.
- 2. Project should be done individually.

- 3. Project work can be of theoretical/ experimental /computational in nature.
- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - Wide review of a topic.
 - Investigation on a problem in a systematic way using appropriate techniques.
 - Systematic recording of the work.
 - Reporting the results with interpretation in a standard documented form.

Presenting the results before the examiners.

- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical models and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
 - 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
 - 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
 - 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
 - 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks are from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the University.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Sl.	Components of Evaluation of Project	Marks for the Project	Weightage
		(Honours/	
No		Honours with	
		Research)	
1	Continuous evaluation of project work	90	30%
	through interim presentations and reports		
	by the committee internally constituted by		
	the Department Council		
2	End-semester viva-voce examination to	150	50%
	be conducted by the external examiner		
	appointed by the university		
3	Evaluation of the day-to-day records and	60	20%
	project report submitted for the end-		
	semester viva-voce examination		
	conducted by the external examiner		
	Total Marks	300	

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/ Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva- Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

INTERNAL EVALUATION OF PROJECT

EXTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/
		Honours with Research)
		12 credits
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
	Total Marks	210

4. GENERAL FOUNDATION COURSES

All the General Foundation Courses (3-credits) in Mathematics are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal Evaluation of a General	Internal Marks of a General Foundation Course of 3-credits in Mathematics		
	Foundation Course in Mathematics	4 Theory Modules	Open-ended Module	
1	Test paper/ Mid-semester Exam	10	2	
2	Seminar/ Viva/ Quiz	6	2	
3	Assignment	4	1	
		20	5	
Total			25	

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5)

Duration	Туре	Total No. of	No. of	Marks for	Ceiling
		Questions	Questions to be	Each	of
			Answered	Question	Marks
1.5 Hours	Short Answer	10	8-10	2	16
	Paragraph/ Problem	5	4 – 5	6	24
	Essay	2	1	10	10
	•			Total Marks	50

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

5. LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

S1.	Percentage of Marks	Description	Letter		Ũ	Class
No.	(Internal & External		Grade	Point	Grade Points	
	Put Together)					
1	95% and above	Outstanding	0	10	9.50 – 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 – 9. 49	with Distinction
3	75% to below 85%	Very Good	A	8	7.50 – 8.49	
4	65% to below 75%	Good	B+	7	6.50 – 7.49	
5	55% to below 65%	Above Average	В	6	5.50 - 6.49	First Class
6	45% to below 55%	Average	С	5	4.50 – 5.49	Second Class
7	35% to below 45% aggregate (internal and external put together) with a minimum of 30% in external valuation	Pass	Р	4	3.50 - 4.49	Third Class
8	Below an aggregate of 35% or below 30% in external evaluation	Fail	F	0	0 - 3.49	Fail
9	Not attending the examination	Absent	Ab	0	0	Fail

LETTER GRADES AND GRADE POINTS

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) =
$$\Sigma i (Ci \times Gi) / \Sigma i (Ci)$$

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
Ι	Course 1	3	А	8	3 x 8 = 24
Ι	Course 2	4	B+	7	4 x 7 = 28
Ι	Course 3	3	В	6	3 x 6 = 18
Ι	Course 4	3	0	10	$3 \ge 10 = 30$
Ι	Course 5	3	С	5	3 x 5 = 15
Ι	Course 6	4	В	6	4 x 6 = 24
	Total	20			139
	SGPA				139/20 = 6.950

ILLUSTRATION – COMPUTATION OF SGPA

The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in CUFYUGP shall be calculated by the following formula.

CGPA for the four-year programme in CUFYUGP shall be calculated by the following formula.

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the University shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

MAJOR CORE COURSES

Programme	B. Sc. Mather	natics Honours					
Course Code	MAT1CJ101	MAT1CJ101 / MAT1MN100					
Course Title	DIFFEREN	FIAL CALCULUS					
Type of Course	Major						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4 4 - 60						
Pre-requisites		dge of Sets, Relations and H	Functions, Scho	ol Level Algebra			
	and Real Nun	nbers (0-99 level).					
Course Summary	The course cours	overs fundamental concept	s in calculus, i	ncluding functions,			
	shifting of g	aphs, limits, continuity, d	ifferentiation, e	extreme values, the			
	Mean Value Theorem, graphing with derivatives, and limits at infinity with						
	asymptotes. Students learn techniques for evaluating limits, finding extrema,						
	and graphing	and graphing functions using derivatives, preparing them for further studies					
	in calculus an	d related fields.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Analyse a function for its limits,	An	F	Internal			
	continuity and differentiability and			Exam/Assignment			
	evaluate limits and derivatives.			/Seminar/Viva/			
				End Sem Exam			
CO2	Apply first and second derivatives and	Ap	F	Internal			
	related theorems to find extrema of			Exam/Assignment			
	functions.			/Seminar/Viva/			
				End Sem Exam			
CO3	Sketch the graph of functions by	An	F	Internal			
	analysing critical points and			Exam/Assignment			
	asymptotes			/Seminar/Viva/			
				End Sem Exam			
* - Remer	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
	l Knowledge (F), Conceptual Knowledge	(C), Procedur	al Knowledge	(P), Metacognitive			
Knowledg	ge (M)						

•

.

Detailed Syllabus:

Textbook		lus and Analytic Geometry, 9 th Edition, George B. T L. Finney, Pearson Publications, 2010, ISBN: 978-81			
Module	Unit	Content	Hrs	Marks	
		Madala I	(48+12)	Ext: 70	
		Module I Preliminaries: Section 3 - Functions			
	1				
	2	Preliminaries: Section 4 - Shifting Graphs.			
		Section 1.1-Rates of Change and Limits - Limits of			
	3	Function Values onwards.			
I	4	Section 1.2 - Rules for Finding Limits. Topics up to and including Example 3.	12	Min.15	
	5	Section 1.2 - Rules for Finding Limits. Rest of the section.			
		Section 1.4- Extensions of the Limit Concept.			
	6	Topics up to and including Example 6.			
		Module II			
	7	Section 1.5 - Continuity.			
		Section 2.1 - The Derivative of a Function (The			
	8	topic Graphing f' from estimated values is optional).			
	9	Section 2.2 - Differentiation Rules.			
II	10	Section 2.3 - Rates of Change. Topics up to and including Example 5.	15	Min.15	
	11	Section 2.5 - The Chain Rule. Topics up to and including Example 6.			
	12	Section 2.6- Implicit Differentiation and Rational Exponents. Topics up to and including Example 5.			
		Module III			
111	13	Section 3.1 - Extreme Values of Functions. Topics up to Finding Extrema.			
	14	4 Section 3.1 - Extreme Values of Functions- Topics from Finding Extrema onwards.			
	15	Section 3.2 - The Mean Value Theorem -Topics up to and including Example 4. (Proof of Theorem 3 is optional).	11	Min.15	
	16	Section 3.2 - The Mean Value Theorem- Increasing Functions and Decreasing Functions			

	17	Section 3.3 - The First Derivative Test for Local Extreme Values.		
		Module IV		
	18	Section 3.4 - Graphing with y' and y'' - Topics up to and including Example 5.		
	19	Section 3.4 - Graphing with y' and y''- Topics from The Second Derivative Test for Local Extreme Values onwards.		
IV	20	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms Topics up to and including Summary for Rational Functions.	10	Min.15
	Dominant Term	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms- Topics from Horizontal and Vertical Asymptotes up to and including Example 12.		
	22	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms-Topics from Graphing with Asymptotes and Dominant Terms onwards.		
		Module V (Open Ended)		
V	Trigor Defini Functi power	12		
References			I	
 How Erw Rob Soo Tom Line Mic 	in Krey ert T Sı T Tan, M. Ap ar Alge chael Va	ton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley I szig, Advanced Engineering Mathematics, 10 th Ed, John nith and Roland B Minton, Calculus, 4 th Ed. McGraw-F Calculus, 9 th Ed.Brooks/Cole Pub Co. bostol, Calculus, Vol 1: One Variable Calculus with an ebra, 2 nd Ed, John Wiley & Sons. an Biezen Calculus Lectures: <u>u.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG</u>	n Wiley & Hill Compa	nies

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	2	1	3	0	1
CO 2	2	3	2	1	3	0	2	1	3	0	1
CO 3	2	3	2	1	3	0	2	2	3	0	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	BSc Mathematics Honours								
Course Code	MAT2CJ101 / 1	MAT2CJ101 / MAT2MN100							
Course Title	INTEGRAL C	INTEGRAL CALCULUS							
Type of Course	Major								
Semester	II								
Academic	100-199								
Level									
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic knowledg	ge of Functions, Limits, Cor	ntinuity and Dif	ferentiation					
		Differential Calculus).							
Course	The course pro-	vides a comprehensive expl	loration of integ	gral calculus, covering					
Summary		h as indefinite integrals,							
		ntegrals, the Fundamenta							
		nulas, and applications in fi							
		ns of plane curves, and area		•					
		idents gain proficiency in s							
	problems involv	ving integration and its appl	ications in vari	ous fields.					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Solve indefinite and definite integrals of functions.	Ap	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam			
CO2	Learn logarithmic, exponential, inverse trigonometric functions and to evaluate derivatives and integrals of the above transcendental functions and use it for computations of other limits	U	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam			
CO3	CO3 Apply integration formulas to find the area between two curves, the surface area and volume of a solid of revolution.		F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam			
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

•

•

Detailed Syllabus:

Textbook	Calculus and Analytic Geometry, 9 th Edition, George B. Thomas, Jr. Ross L. Finney, Pearson Publications, 2010, ISBN: 978-8174906168.							
Module	Unit	Content	Hrs (48+12)	Marks Ext: 70				
	1	Module I Section 4.1 - Indefinite Integrals.	-					
	2	Section 4.3 - Integration by Substitution - Running the Chain Rule Backward.						
I	3	Section 4.5 - Riemann Sums and Definite Integrals. (Example 9 is optional.)	14	Min.15				
	4	Section 4.6 - Properties, Area, and the Mean Value Theorem - Topics up to and including Example 6.						
	5	Section 4.6 - Properties, Area, and the Mean Value Theorem- Topics from The Average Value of an Arbitrary Continuous Function onwards.						
		Module II						
	6	Section 4.7 – The Fundamental Theorem (Example 6 is optional).						
	7	Section 4.8 - Substitution in Definite Integrals.						
	8	Section 6.2 - Natural Logarithms- Topics up to and including The Graph and Range of ln x.	-					
II	9	Section 6.2 - Natural LogarithmsTopics from Logarithmic Differentiation onwards.	11	Min.15				
	10	Section 6.3 - The Exponential Function- Topics up to and including Example 4.						
	11	Section 6.3 - The Exponential Function- Topics from The Derivative and Integral of e ^x onwards.						
		Module III						
	12	Section 6.6 - L' Hopital's Rule						
ш	13	Section 6.9 - Derivatives of Inverse Trigonometric Functions; Integrals.	12	Min.15				
111	14	Section 7.1 - Basic Integration Formulas.		1/1111.15				
	15	Section 7.2 - Integration by Parts	1					
	16	Section 7.3 Partial Fractions.	1					
		Module IV						
IV	17	Section 5.1 - Areas Between Curves Topics up to and including Example 2.	11	Min.15				

	18	Section 5.1 - Areas Between Curves- Topics from Boundaries with Changing Formulas							
	19	Section 5.2 - Finding Volumes by Slicing. (Example 2 may be done as open ended).							
	20	Section 5.3 - Volumes of Solids of Revolution- Disks and Washers - Topics up to and including Example 4.							
	21	Section 5.5 - Lengths of Plane Curves Topics up to and including Example 2.							
	22	Section 5.6 - Areas of Surfaces of Revolution- Topics up to and including Example 2.							
		Module V (Open Ended)							
V	Inverse Functions and their Derivatives, ax and logax, Inverse12Trigonometric Functions and their derivatives, Hyperbolic12Functions, Integrals and their derivatives, Integration using trigonometric substitutions, Moments and Center of Mass.12								
2. Erw 3. Roł	ward Ar vin Krey pert T S	nton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley India yszig, Advanced Engineering Mathematics, 10 th Ed, John W mith and Roland B Minton, Calculus, 4 th Ed. McGraw-Hill , Calculus, 9 th Ed. Brooks/Cole Pub Co.	'iley & Sons.						
5. Tor	n M. Aj	postol, Calculus, Vol 1: One Variable Calculus with an Intr	oduction to Li	near					
		bra, 2 nd Ed, John Wiley & Sons. nael Van Biezen Calculus Lectures:							

6. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	1	3	0	1
CO 2	2	3	2	1	3	0	3	1	3	0	1
CO 3	2	3	2	1	3	0	3	2	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B.Sc. Mathema	tics Honours		
Course Code	MAT3CJ201			
Course Title	MULTIVARI	ABLE CALCULUS		
Type of Course	Major			
Semester	III			
Academic Level	200-299			
Course Details	Credit	Lecture/	Practical	Total Hours
		Tutorial	per week	
		per week		
	4	3	2	75
Pre-requisites	and planes in 3	ge of vectors, dot product, c -dimensional space	•	
Course Summary	calculus course include: Param Planes in Space Coordinates, f integration of v limits, and der lines of surface to find area, vo vector fields; l normal vectors	Calculus takes the concepts e and extends them to mu teterizations of Plane Cur- e, Cylinders and Quadric unctions of many variables, vector-valued functions; ap ivatives of multivariable fu s, applying double and tripl lume, surface area, vector f ine integrals; Green's Theo , tangent planes, and areas; Stokes's Theorem.	ltiple dimension ves, Polar Co Surfaces, Cyli limit, continui oplication of ver- unctions, tange e integrals to no fields, finding op prem; parametri	ons. Topics discussed oordinates, Lines and ndrical and Spherical ty, differentiation, and ector-valued functions ent planes and normal nultivariable functions curl and divergence of ric surfaces, including

Course Outcomes (CO):

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Describe various coordinate systems-	Ap	С	Internal
	Cartesian, polar, cylindrical, and			Examination/
	spherical-to represent, analyse, and			Assignment/ End
	interpret geometric figures and spatial			Sem examination
	relationships.			
CO2	Compute and apply limits, partial	Ар	С	Internal
	derivatives, and multiple integrals for			Examination/Sem
	functions of several variables to solve			inar/ Assignment/
	complex mathematical and real-world			Report/ End Sem
	problems.			examination
CO3	Apply advanced integration techniques	An	С	Internal
	and vector calculus principles to			Examination/Sem
	evaluate integrals in various coordinate			inar/ Assignment/
	systems and analyse vector fields and			Report/ End Sem
	their applications in physics and			examination
	engineering.			
* - Reme	ember (R), Understand (U), Apply (Ap), An	alyse (An), E	Evaluate (E), Cr	reate (C)
	al Knowledge(F) Conceptual Knowledge (G			
Knowled	lge (M)			

•

.

Detailed Syllabus:

Textbook	Calculus and Analytic Geometry, 9 th Edition, George B. Thomas, Jr. Ross L. Finney, Pearson Publications, 2010, ISBN: 978-8174906168.					
Module	Unit	Unit Content				
		Module I	30)			
	1	Section 9.4: Parameterizations of Plane Curves				
		Topics up to and including Example 7				
	2	Section 9.6: Polar Coordinates	-			
		Definition of Polar Coordinates, Negative Values of r, Elementary Coordinate Equations and Inequalities, Cartesian Versus Polar Coordinates.				
	3	Section 10.5: Lines and Planes in Space	_			
I		Lines and Line Segments in Space, The Distance from a Point to a Line in Space, Equations for Planes in Space, Angles Between Planes; Lines of Intersection.	10			
	4	Section 10.6: Cylinders and Quadric Surfaces				
		Cylinders, Drawing Lesson, Quadric Surfaces, Drawing Lesson.				
	5	Section 10.7: Cylindrical and Spherical Coordinates	_			
		Cylindrical Coordinates, Spherical Coordinates				
		Module II				
	6	Section 12.1: Functions of Several Variables				
		Functions and Variables, Graphs and Level Curves of Functions of Two Variables, Contour Lines, Level Surfaces of Functions of Three Variables.				
	7	Section 12.2: Limits and Continuity	-			
		Limits, Continuity, Functions of More Than Two Variables.				
II	8	Section 12.3: Partial Derivatives	12			
		Definitions and Notation, Calculations, Functions of More Than Two Variables, The Relationship Between Continuity and the Existence of Partial Derivatives, Second Order Partial Derivatives, Euler's Theorem, Partial Derivatives of Still Higher Order.				
	9	Section 12.4: Differentiability, Linearization, and Differentials				

·			
		Differentiability, How to Linearize a Function of Two Variables, How Accurate is the Standard Linear Approximation? Predicting Change with Differentials (Topics up to and including Example 7)	
	10	Section 12.5: The Chain Rule The Chain Rule for Functions of Two Variables (Proof of Theorem 5 is optional), The Chain Rule for Functions of Three Variables, The Chain Rule for Functions Defined on Surfaces, Implicit Differentiation, Remembering the Different Forms of the Chain Rule, The Chain Rule for Functions of Many Variables.	
-	11	Module III Section 12.7: Directional Derivatives, Gradient Vectors, and	
		Tangent Planes	
		Directional Derivatives in the Plane, Geometric Interpretation of the Directional Derivative, Calculation, Properties of Directional Derivatives, Gradients and Tangent to Level Curves, Functions of Three Variables.	
	12	Section 12.7: Directional Derivatives, Gradient Vectors, and Tangent Planes	
ш		Equations for Tangent Planes and Normal Lines, Planes Tangent to a Surface $z=f(x,y)$, Algebra Rules for Gradients.	
	13	Section 12.8: Extreme Values and Saddle points	
		The Derivative Tests.	11
	14	Section 12.8: Extreme Values and Saddle points	
		Absolute Maxima and Minima on Closed Bounded Regions, Conclusion.	
	15	Section 12.9: Lagrange Multipliers	
		Constrained Maxima and Minima, The Method of Lagrange Multipliers (Theorem 9 and Corollary of Theorem 9 are optional).	
	16	Section 12.9: Lagrange Multipliers	
		Lagrange Multipliers with Two Constraints.	
		Module IV	
	17	Section 13.1: Double Integrals,	
IV		Double Integrals over Rectangles, Properties of Double Integrals, Double Integrals as Volumes, Fubini's Theorem for Calculating Double Integrals.	
	18	Section 13.1: Double Integrals	12

		Double Integrals over Bounded Nonrectangular Regions, Finding the Limits of Integration.			
	19	Section 13.2: Areas, Moments and Centers of Mass			
		Areas of Bounded Regions in the Plane, Average Value.			
	20	Section 13.3: Double Integrals in Polar Form			
		Integrals in Polar Coordinates, Limits of Integration, Changing Cartesian Integrals into Polar Integrals.			
	21	Section 13.4: Triple Integrals in Rectangular Coordinates			
		Triple Integrals, Properties of Triple Integrals, Volume of a Region in Space, Evaluation.			
	22	Section 13.4: Triple Integrals in Rectangular Coordinates			
		Average Value of a Function in Space.			
		Practicum			
	Triple	Integrals in Cylindrical Coordinates, Spherical coordinates			
	Substitution in Multiple Integrals				
	Vector Valued Functions and Space Curves				
	Line I	ntegrals			
	Vector	r Fields, Work, Circulation and Flux	20		
V	Path I	ndependence, Potential Functions and Conservative Fields.	30		
	Green	's Theorem in the Plane (Proof is Optional)			
	Surfac	e area and surface integrals			
	Param	etrized surfaces			
	Stoke ⁷	's theorem (Proof is optional)			
	The D	ivergence theorem (Proof is Optional)			
References					
		ns & Davis : Calculus Early Transcendentals (10/e) John Wiley & Sons	,		
2. Arno	ld Ostel	BN: 9780470647691 bee & Paul Zorn: Multivariable Calculus (2/e) W. H. Freeman Custom			
3. Jame	s Stewa	N.Y.(2008)ISBN: 9781429230339 rt : Calculus (8/e) Brooks/Cole Cengage Learning(2016)			
		85740621 arsden & Anthony Tromba :Vector Calculus (6/e) W. H. Freeman and			
Com	pany ,N	ew York(2012) ISBN: 9781429215084 hristopher Heil & Maurice D. Weir : Thomas' Calculus (14/e) Pearson(2018)		
ISBN	V 013443	38981			
		xi: Multivariable Calculus Early Transcendentals (2/e) W. H. Freeman a 012) ISBN: 1429231874	anu		

- Robert A Adams & Christopher Essex : Calculus: A complete Course (8/e) Pearson Education Canada (2013) ISBN: 032187742X
 William Wildow A Line India (4/c) Provide Education
- 8. William Wade: An Introduction to Analysis, (4/e) Pearson Education

*Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	1	1	1	1	3
CO 2	3	2	2	2	3	2	1	-	3	-	1
CO 3	3	2	1	1	3	2	1	1	1	-	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Report
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment			End Semester Examinations
CO 1					
CO 2	\checkmark		\checkmark	\checkmark	
CO 3					

Programme	BSc Mathematics Honours						
Course Code	MAT3CJ202 / MAT3	MAT3CJ202 / MAT3MN200					
Course Title	MATRIX ALGEBR	A					
Type of Course	Major						
Semester	III						
Academic	200 - 299						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	1. System of linear eq	juations and their solution	n sets.				
	2. Euclidean Spaces a	nd their algebraic and ge	cometric prope	rties.			
Course	This course covers ma	atrix theory and linear alg	gebra, emphasiz	zing topics useful			
Summary	in many other disciplines. It begins with the study of systems of linear						
	equations and the properties of matrices. Emphasis is given to topics including						
	systems of equations	systems of equations, vector spaces, linear dependence and independence,					
	dimension, linear tran	sformations, eigenvalues	s and diagonali	ization.			

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used				
		Level*	Category#					
CO1	Understand row reductions and echelon forms of a matrix and their uses in solving a linear system.	U	С	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam				
CO2	Define and compute eigen values and eigen vectors of a square matrix.	An	Р	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam				
CO3	Interpret Linear Transformations using matrices and visualize geometrically.	An	С	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam				
# - Factua	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

Text Book		ar Algebra and its Applications, Third Edition, David. cations 2006.	C. Lay	, Pearson
Module	Unit	Content	Hrs (60)	External Marks (70)
Ι		Module I		
	1	Section 1.1: Systems of Linear Equations		-
		Systems of Linear Equations, Matrix Notation, Solving a Linear System.		Min. 15
	2	Section 1.1: Systems of Linear Equations		
		Elementary Row Operations, Existence and Uniqueness Questions.		
	3	Section 1.2: Row Reduction and Echelon Forms		
		Row Reduction and Echelon Forms, Pivot Positions, The Row Reduction Algorithm.		
	4	Section 1.2: Row Reduction and Echelon Forms		
		Solutions of Linear Systems, Parametric Descriptions of Solution Sets, Back Substitution, Existence and Uniqueness Questions.	14	
	5	Section 1.3: Vector Equations		
		Vector Equations, Vectors in \mathbb{R}^2 , Geometric Descriptions of \mathbb{R}^2 , Vectors in \mathbb{R}^3 , Vectors in \mathbb{R}^n .		
	6	Section 1.3: Vector Equations		
		Linear Combinations, A Geometric Description of Span $\{v\}$ and Span $\{u, v\}$, Linear Combinations in Applications.		
	7	Section 1.4: The Matrix Equation Ax = b		
		The Matrix Equation $Ax = b$, Existence of Solutions, Computation of Ax, Properties of the Matrix-Vector Product Ax.		
II		Module II		
	8	Section 1.5: Solution Sets of Linear Systems		1
		Homogeneous Linear Systems, Parametric Vector Form, Solutions of Non-Homogenous Systems.		
	9	Section 1.7: Linear Independence	13	
	1	1	1	L

IV	19	Module IV Section 5.1: Eigen Vectors and Eigen Values Eigen Vectors and Eigen Values (Topics up to and including	10	
	18	Section 2.9: Dimension and Rank Coordinate Systems, The Dimension of a Subspace (Topics up to and including Theorem 15).		
	17	Section 2.8 : Subspaces of \mathbb{R}^n Subspaces of \mathbb{R}^n , Column Space and Null Space of a Matrix, Basis for a Subspace.		
	16	Section 2.2: The Inverse of a Matrix An Algorithm for Finding A^{-1} , Another View of Matrix Inversion.	11	
	15	Section 2.2: The Inverse of a Matrix The Inverse of a Matrix (Example 3 is optional), Elementary Matrices (Proof of Theorem 7 is optional).		
		Matrix Operations, Sums and Scalar Multiples, Matrix Multiplication, Properties of Matrix Multiplication, Powers of a Matrix, The Transpose of a Matrix.		Min. 15
III	14	Module III Section 2.1: Matrix Operations		
		Existence and Uniqueness Questions. (Topics up to and including Theorem 11).		
	13	Section 1.9: The Matrix of a Linear Transformation	1	
		The Matrix of a Linear Transformation, Geometric Linear Transformation of \mathbb{R}^2 .		
	12	Linear Transformations Section 1.9: The Matrix of a Linear Transformation		
	11	Section 1.8: Introduction to Linear Transformations		
	10			
	10	Linear Independence, Linear Independence of Matrix Columns, Sets of One or Two Vectors, Sets of Two or More Vectors. Section 1.8: Introduction to Linear Transformations	_	Min. 15

			1				
	20	Section 5.2: The Characteristic Equation					
	The Characteristic Equation, Determinants (Topics up to and including Theorem 3).			Min. 15			
	21	Section 5.2: The Characteristic Equation					
	The Characteristic Equation, Similarity (Topics up to and including Theorem 4).						
	22	Section 5.3: Diagonalization					
		Diagonalization (Proof of Theorem 5 is optional), Diagonalizing Matrices, Matrices Whose Eigen Values Are Not Distinct.					
		1					
V		Module V (Open Ended)	12				
	Dete	rminants, Properties of Determinants, Applications of Linear					
	Syste	ms, Characterizations of Invertible Matrices, Partitioned					
	-	ices, Application to Computer Graphics, Eigen Vectors and					
	Linea	ar Transformations.					
Reference	ces		1	1			
		ry Linear Algebra, Howard Anton, Chris Rorres, Wiley Publications					
		gebra Done Right, 3/e, Sheldon Axler, Springer Nature,2015.					
		ion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press	•				
	-	gebra – A Geometric Approach, S.Kumaresan, Prentice Hall of India.					
8. H	8. Holt, Jeffrey. <i>Linear Algebra with Applications</i> . wh freeman, 2017.						

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	2	1	3	3	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	BSc Mathematics Ho	nours						
Course Code	MAT4CJ203	MAT4CJ203						
Course Title	REAL ANALYSIS	[
Type of	Major							
Course		-						
Semester	IV							
Academic	200 - 299							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	1. Mathematical Logi	c and necessary exposure	e to set theory.					
	2. Basic Calculus							
Course	After introducing the	basic notions in set theo	ry, the course of	develops into the				
Summary	construction of the	Real number system.	Thereafter Rea	al functions are				
	introduced and the no	tions of limit and continu	uity are develop	bed.				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledg	Evaluation Tools used				
		Lever	Category#					
CO1	Demonstrate Proficiency in Set Theory Fundamentals and Real Number Properties	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam				
CO2	Apply the completeness property of \mathbb{R} , and solve problems involving intervals and applications of the supremum property.	U	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam				
CO3	Analyse sequences and their limits, apply limit theorems, and demonstrate an understanding of concepts such as monotone sequences, sub-sequences, and the Cauchy Criterion, as well as their applications in solving problems related to sequences and limits.	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam				
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Detailed Syllabus:

		7 & Sons (2011)		
Module	Unit	Content	Hrs (45+30)	External Marks (70)
Ι		Introduction to Set theory		
	1	Section 1.1 - Sets and functions (for review	8	Min.15
	2	only) Section 1.2 - Mathematical Induction (Proofs of	0	IVIIII.13
		results included in practicum part).		
	3	Section 1.3 – Finite and Infinite sets.		
	4	Section 1.3 – Countable and Uncountable sets.		
II		The Real numbers		
	5	Section 2.1 – The algebraic properties of \mathbb{R} .		
	6	Section 2.1 – The order properties of \mathbb{R} .		
	7	Section 2.2 – Absolute value and the Real Line.		
	8	Section 2.3 – Completeness property of \mathbb{R}	13	Min.15
		(Proofs included in Practicum).		
	9	Section 2.4 – Applications of the Supremum		
		property - 2.4.3 to 2.4.6 and 2.4.8 to 2.4.9 (All		
		other discussions included in Practicum).		
	10	Section 2.5 – Intervals – 2.5.2 to 2.5.4 (All other		
		discussions included in Practicum).		
III		Sequences and Limits		
	11	Section 3.1 – Sequences and their limits.		
	12	Section 3.1 – Problems to find limits of		
		sequence.		
	13	Section 3.2 – Limit theorems.	10	
	14	Section 3.2 – Problems using Limit theorems.	12	Min.15
	15	Section 3.3 – Monotone sequences – Monotone		
		Convergence Theorem.		
	16	Section 3.3 – Applications of Monotone		
		Convergence Theorem – Euler's number		
187		introduction only.		
IV	17	Sequences and Limits (continued)		
	17	Section 3.4 – Sub sequences and the Bolzano Weierstrass theorem (Second proof of Theorem		
		3.4.8 is omitted for external exam and limits		
		superior and inferior are included in practicum).		
	18	Section 3.4 – Problems using Divergence		
	10	criteria.		
	19	Section 3.5 – The Cauchy Criterion (Examples	12	Min.10
		3.5.9, 3.5.11 and Corollary 3.5.10 are included		
		in Practicum).		
	20	Section 4.1- Limits of functions (Proofs included		
		in Practicum).		
	21	Section 4.2: Limit theorems of functions (Proofs		
		included in Practicum).		

	22			
	22	Section 4.3: Some extensions of limit concepts		
T 7		(Proofs included in Practicum).		
V		Practicum:		-
		oal is for the students to learn the following topics		
		5 practicum sessions of two hours each via self-		
		y and group activities. The lecturer may assist by		
		ing group discussions, supervising class seminars		
		and referring library books for self-study and		
		note preparation.		
	1	Section 1.2 - for detailed discussions including		
		proofs		
	2	Section 2.3 – re do it with all the proofs		
	3	Section 2.4 – Worked out examples for applying		
		the ideas of supremum and infimum and the		
		existence of square root of 2		
	4	Section 2.5 – Characterization theorem for		
		intervals and representations of real numbers		
	5	Section 3.4 – discussions of limit inferior and	30	
		limit superior with examples		
	6	Section 3.5 – Estimation of errors in contractive		
		sequences with examples		
	7	Section 3.6 – Properly divergent Sequences		
	8	Section 3.7 – Introduction to Infinite Series –		
		conditions for convergence – Harmonic Series		
	9	Section 3.7 – Comparison Tests with examples		
	10	Section 4.1 – Formulate a precise definition of		
		limit and illustrate with examples		
	11	Section 4.1 – Sequential Criterion for Limits for		
		convergence and divergence with examples		
	12	Section 4.2 – Limit theorems for functions in		
		parallel to that of sequences.		
	13	Section 4.3 – One sided and infinite limits.		
	14	Section 11.1 – Open sets, their properties and		
		characterization.		
	15	Section 11.1 - Closed sets, their properties and		
		characterization.		

References

- 1. Tom.M. Apostol, Calculus I, Wiley & Sons.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics, 2/e, John WileySons

Optional Programming References for Practicum:

- (1) SageMath Calculus Tutorial <u>https://www.sagemath.org/calctut/limits.html</u>
- (2) SageMath 2D plotting https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html#

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	2	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	3	2	3	3	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	√	~	>	\checkmark
CO 2	~	√	✓	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	BSc Mathematics Honours						
Course Code	MAT4CJ204						
Course Title	BASIC LINEAR ALGEBRA						
Type of Course	Major						
Semester	IV						
Academic Level	200 - 299						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4		60			
Pre-requisites	 1.Familiarity with system of equations and their solutions 2. Knowledge about matrices and matrix operations. 						
Course Summary	nary This course is a quick review of linear algebra, intended for students who have						
	already taken a previous course in linear algebra or have some experience with						
	vectors and matrices. It begins with the concepts of vector spaces, subspaces,						
	bases and dimension. Linear transformations are introduced as 'natural maps'						
	between vector spaces. The course opens up the classical finite dimensional						
	inner product theory for the canonical reduction of a matrix as a special case of						
	a self-adjoint operator.						

Course Outcomes:

CO	CO Statement	Cognitive	Knowledge	Evaluation				
		Level*	Category#	Tools used				
CO1	Understand and apply concepts related to	U	С	Internal				
	vector spaces and subspaces, including			Exam/Assignm				
	determining whether a set forms a			ent/Seminar/				
	subspace and finding the span of a set			Viva/ End Sem				
				Exam				
CO2	Demonstrate proficiency in analysing null	An	Р	Internal				
	spaces, column spaces, and linear			Exam/Assignm				
	transformations, including understanding			ent/Seminar/				
	the kernel and range of a linear			Viva/ End Sem				
	transformation and contrasting the			Exam				
	properties of null space and column space.			LAUII				
CO3	Evaluate and apply concepts related to	Е	С	Internal				
	bases, dimensionality, and rank of vector			Exam/Assignm				
	spaces, including understanding bases for			ent/Seminar/				
	null space and column space, determining			Viva/ End Sem				
	dimensions of subspaces, and applying the			Exam				
	rank theorem to systems of equations.			LAdill				
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowledge (M)								

•

Detailed Syllabus:

Text		inear Algebra and its Applications, Third Edition, David .C. Lay, Pearson					
Book	Publications						
Module	Unit	Content	Hrs	External			
			(48+ 12)	Marks (70)			
Ι		Module I	12)	(70)			
	1						
		Vector Spaces and Subspaces, Subspaces, A Subspace					
		Spanned by a Set.					
	2	Section 4.2: Null Spaces, Column Spaces, and Linear					
		Transformations.					
		The Null Space of a Matrix, An Explicit Description of					
		Nul A.					
	3	Section 4.2: Null Spaces, Column Spaces, and Linear					
		Transformations.		Min 15			
		The Column Space of a Matrix, The Contrast Between	14				
		Nul A and Col A.					
	4	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations.					
		Kernel and Range of a Linear Transformation.					
	5	Section 4.3: Linearly Independent Sets; Bases.					
		Linearly Independent Sets; Bases, The Spanning Set					
		Theorem.					
	6	Section 4.3: Linearly Independent Sets; Bases.					
		Bases for Nul A and Col A, Two Views of a Basis.					
II		Module II					
	7	Section 4.4: Coordinate Systems.					
		Coordinate Systems, A Graphical Interpretation of					
		Coordinates, Coordinates in \mathbb{R}^n .					
	8	Section 4.4: Coordinate Systems.					
		The Coordinate Mapping.					
	9	Section 4.5: The Dimension of a Vector Space.					
	10	The Dimension of a Vector Space.	10	Min 15			
	10	Section 4.5: The Dimension of a Vector Space.	12				
		Subspaces of a Finite-Dimensional Space, The Dimensions of Nul A and Col A.					
	11	Section 4.6: Rank					
		Rank, The Row Space.					
	12	Section 4.6: Rank					
		The Rank Theorem, Applications to Systems of Equations					
		(Topics up to and including Example 5).					
III		Module III					
	13	Section 6.1: Inner Product, Length and Orthogonality					
		The Inner Product, The Length of a Vector, Distance in \mathbb{R}^n .					
	14	Section 6.1: Inner Product, Length and Orthogonality	12	Min 15			
		Orthogonal Vectors, Orthogonal Complements, Angles in					
		\mathbb{R}^2 and \mathbb{R}^3 .					
	15	Section 6.2: Orthogonal Sets					

Book:	Orthogonal Sets, An Orthogonal Projection (Topics up to and including Example 4).Section 6.2: Orthogonal SetsOrthonormal Sets.Section 6.4: The Gram-Schmidt ProcessThe Gram -Schmidt ProcessQR Factorization of Matrices.Section 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices <td colspan<="" th=""><th>10 12</th><th>9 ISBN</th></td>	<th>10 12</th> <th>9 ISBN</th>	10 12	9 ISBN																																																																											
17 18 19 20 21 22 22 Jinear Book:	Section 6.2: Orthogonal SetsOrthonormal Sets.Section 6.4: The Gram-Schmidt ProcessThe Gram -Schmidt Process, Orthonormal Bases.Section 6.4: The Gram -Schmidt ProcessQR Factorization of Matrices.Module IVSection 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix , The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
17 18 19 20 21 22 22 Jinear Book:	Orthonormal Sets.Section 6.4: The Gram-Schmidt ProcessThe Gram -Schmidt Process, Orthonormal Bases.Section 6.4: The Gram -Schmidt ProcessQR Factorization of Matrices.Module IVSection 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesSection 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
18 19 20 21 22 Linear Book:	Section 6.4: The Gram-Schmidt Process The Gram -Schmidt Process Section 6.4: The Gram -Schmidt Process QR Factorization of Matrices. Module IVSection 7.1: Diagonalization of Symmetric Matrices Diagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric MatricesDecomposition 7.1: Diagonalization of Symmetric MatricesDiagonalization 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3),Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionOPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
18 19 20 21 22 Linear Book:	The Gram -Schmidt Process, Orthonormal Bases.Section 6.4: The Gram -Schmidt ProcessQR Factorization of Matrices.QR Factorization of Matrices.Module IVSection 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric MatricesDiagonalization of Symmetric MatricesSection 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3),Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionMatrix , The Singular Value DecompositionOPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Da	12																																																																													
19 20 21 22 Jinear Book:	Section 6.4: The Gram -Schmidt Process QR Factorization of Matrices.Module IVSection 7.1: Diagonalization of Symmetric Matrices Diagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric Matrices The Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic Forms Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
19 20 21 22 Jinear Book:	QR Factorization of Matrices.Module IVSection 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric MatricesDiagonalization of Symmetric MatricesSection 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3),Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionOPEN ENDEDAlgebra Lab Sessions <tr <td=""><td colsp<="" th=""><th>12</th><th></th></td></tr> <tr><th>20 21 22 Linear Book:</th><th>Module IVSection 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>12</th><th></th></tr> <tr><th>20 21 22 Linear Book:</th><th>Section 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>12</th><th></th></tr> <tr><td>20 21 22 Linear Book:</td><td>Diagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3),Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value Decomposition, The Singular Values ofan $m \times n$ Matrix, The Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re</td><th>12</th><td></td></tr> <tr><th>21 22 Linear Book:</th><th>Section 7.1: Diagonalization of Symmetric Matrices The Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic Forms Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>12</th><th></th></tr> <tr><th>21 22 Linear Book:</th><th>The Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>12</th><th></th></tr> <tr><th>22 Linear Book:</th><th>Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix , The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>12</th><th></th></tr> <tr><th>22 Linear Book:</th><th>Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>12</th><th></th></tr> <tr><th>inear Book:</th><th>Classifying Quadratic Forms. Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>12</th><th>9 ISBN</th></tr> <tr><th>inear Book:</th><th>Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>I</th><th>9 ISBN</th></tr> <tr><th>inear Book:</th><th>The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>I</th><th>9 ISBN</th></tr> <tr><th>Book:</th><th>an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>I</th><th>9 ISBN</th></tr> <tr><th>Book:</th><th>(Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>I</th><th>9 ISBN</th></tr> <tr><th>Book:</th><th>OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>I</th><th>9 ISBN</th></tr> <tr><th>Book:</th><th>Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re</th><th>I</th><th>9 ISBN</th></tr> <tr><th colspan="7">Jupyter: <u>https://github.com/mikexcohen/LinAlg4DataScience</u> Choose lab demos and exercises for 12 hours as per lecturer's discretion. For Module I & II, Ch 2, 3, 5, 6 of book for Lab. For Module III, Ch 2 and Ch 9 of book for Lab. For Module IV, Ch 14 of book for Lab. Python and Jupyter review in Ch 16 of book.</th></tr> <tr><th></th><th></th><th></th><th></th></tr> <tr><th>a Done iction f linear Algeb her, O</th><th>e Right, 3/e, Sheldon Axler, Springer Nature,2015. to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. ora, 2/e, Hoffman K and Kunze R, Prentice Hall of India,1991.</th><th>s. IJ: Prenti</th><th>ce Hall,</th></tr> <tr><td>C Y nt a ic ii A h</td><td>ary I Don tion near lgeb er, O</td><th>or Module III, Ch 2 and Ch 9 of book for Lab. or Module IV, Ch 14 of book for Lab. ary Linear Algebra: Application Version, 11/e, Howard Anton & Chris R Done Right, 3/e, Sheldon Axler, Springer Nature, 2015. tion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press near Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991. er, Otto. <i>Linear algebra with applications</i>. Vol. 52. Eaglewood Cliffs, N</th><td>or Module III, Ch 2 and Ch 9 of book for Lab. or Module IV, Ch 14 of book for Lab. ary Linear Algebra: Application Version, 11/e, Howard Anton & Chris Rorres Wi Done Right, 3/e, Sheldon Axler, Springer Nature, 2015. tion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press. near Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991. er, Otto. <i>Linear algebra with applications</i>. Vol. 52. Eaglewood Cliffs, NJ: Prenti</td></tr>	<th>12</th> <th></th>	12		20 21 22 Linear Book:	Module IVSection 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12		20 21 22 Linear Book:	Section 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12		20 21 22 Linear Book:	Diagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3),Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value Decomposition, The Singular Values ofan $m \times n$ Matrix, The Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12		21 22 Linear Book:	Section 7.1: Diagonalization of Symmetric Matrices The Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic Forms Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12		21 22 Linear Book:	The Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12		22 Linear Book:	Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix , The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12		22 Linear Book:	Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12		inear Book:	Classifying Quadratic Forms. Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	12	9 ISBN	inear Book:	Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN	inear Book:	The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN	Book:	an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN	Book:	(Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN	Book:	OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN	Book:	Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN	Jupyter: <u>https://github.com/mikexcohen/LinAlg4DataScience</u> Choose lab demos and exercises for 12 hours as per lecturer's discretion. For Module I & II, Ch 2, 3, 5, 6 of book for Lab. For Module III, Ch 2 and Ch 9 of book for Lab. For Module IV, Ch 14 of book for Lab. Python and Jupyter review in Ch 16 of book.											a Done iction f linear Algeb her, O	e Right, 3/e, Sheldon Axler, Springer Nature,2015. to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. ora, 2/e, Hoffman K and Kunze R, Prentice Hall of India,1991.	s. IJ: Prenti	ce Hall,	C Y nt a ic ii A h	ary I Don tion near lgeb er, O	or Module III, Ch 2 and Ch 9 of book for Lab. or Module IV, Ch 14 of book for Lab. ary Linear Algebra: Application Version, 11/e, Howard Anton & Chris R Done Right, 3/e, Sheldon Axler, Springer Nature, 2015. tion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press near Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991. er, Otto. <i>Linear algebra with applications</i> . Vol. 52. Eaglewood Cliffs, N	or Module III, Ch 2 and Ch 9 of book for Lab. or Module IV, Ch 14 of book for Lab. ary Linear Algebra: Application Version, 11/e, Howard Anton & Chris Rorres Wi Done Right, 3/e, Sheldon Axler, Springer Nature, 2015. tion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press. near Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991. er, Otto. <i>Linear algebra with applications</i> . Vol. 52. Eaglewood Cliffs, NJ: Prenti
<th>12</th> <th></th>	12																																																																														
20 21 22 Linear Book:	Module IVSection 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
20 21 22 Linear Book:	Section 7.1: Diagonalization of Symmetric MatricesDiagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
20 21 22 Linear Book:	Diagonalization of Symmetric Matrices.Section 7.1: Diagonalization of Symmetric MatricesThe Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3),Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value Decomposition, The Singular Values ofan $m \times n$ Matrix, The Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
21 22 Linear Book:	Section 7.1: Diagonalization of Symmetric Matrices The Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic Forms Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
21 22 Linear Book:	The Spectral Theorem. Spectral Decomposition.Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value DecompositionThe Singular Value DecompositionThe Singular Value DecompositionThe Singular Value Decomposition(Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
22 Linear Book:	Section 7.2: Quadratic FormsQuadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix , The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
22 Linear Book:	Quadratic Forms (Topics up to and including Example 3), Classifying Quadratic Forms.Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only).OPEN ENDEDAlgebra Lab SessionsMike Cohen, Practical Linear Algebra for Data Science, O'Re	12																																																																													
inear Book:	Classifying Quadratic Forms. Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	12	9 ISBN																																																																												
inear Book:	Section 7.4: The Singular Value Decomposition The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN																																																																												
inear Book:	The Singular Value Decomposition, The Singular Values of an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN																																																																												
Book:	an $m \times n$ Matrix, The Singular Value Decomposition (Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN																																																																												
Book:	(Topics up to and including Example 4 only). OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN																																																																												
Book:	OPEN ENDED Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN																																																																												
Book:	Algebra Lab Sessions Mike Cohen, Practical Linear Algebra for Data Science, O'Re	I	9 ISBN																																																																												
Jupyter: <u>https://github.com/mikexcohen/LinAlg4DataScience</u> Choose lab demos and exercises for 12 hours as per lecturer's discretion. For Module I & II, Ch 2, 3, 5, 6 of book for Lab. For Module III, Ch 2 and Ch 9 of book for Lab. For Module IV, Ch 14 of book for Lab. Python and Jupyter review in Ch 16 of book.																																																																															
a Done iction f linear Algeb her, O	e Right, 3/e, Sheldon Axler, Springer Nature,2015. to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. ora, 2/e, Hoffman K and Kunze R, Prentice Hall of India,1991.	s. IJ: Prenti	ce Hall,																																																																												
C Y nt a ic ii A h	ary I Don tion near lgeb er, O	or Module III, Ch 2 and Ch 9 of book for Lab. or Module IV, Ch 14 of book for Lab. ary Linear Algebra: Application Version, 11/e, Howard Anton & Chris R Done Right, 3/e, Sheldon Axler, Springer Nature, 2015. tion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press near Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991. er, Otto. <i>Linear algebra with applications</i> . Vol. 52. Eaglewood Cliffs, N	or Module III, Ch 2 and Ch 9 of book for Lab. or Module IV, Ch 14 of book for Lab. ary Linear Algebra: Application Version, 11/e, Howard Anton & Chris Rorres Wi Done Right, 3/e, Sheldon Axler, Springer Nature, 2015. tion to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press. near Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002. Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India, 1991. er, Otto. <i>Linear algebra with applications</i> . Vol. 52. Eaglewood Cliffs, NJ: Prenti																																																																												

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	2	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	3	2	3	3	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	~	~	~	\checkmark
CO 3	~	\checkmark	~	~	✓

Programme	BSc Mathematics Honours							
Course Code	MAT4CJ205							
Course Title	FUNDAMENT	FUNDAMENTALS OF PYTHON AND SAGEMATH						
Type of Course	Major							
Semester	IV							
Academic Level	200-299							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	3	2	75				
	integral courses	course in calculus with an u calculus (higher secondary from Bsc) course in linear algebra ((hi	level and one o	or two semester				
Course Summary	python program and read them f tasks using com arrays is solved used to do vario A brief introduc analysis. Using advance mather course. Various and linear alge	of the course, it intends to is using various popular inte files is introduced next along ditionals and loops. The pro- using the python module nu- bus mathematical problems re- ction of python module pance g the Python programming matics software sagemath s practical problems making bra are to be solved using me to know some of the app	erfaces. How to g with the conc oblems connect umpy. The pyth related with syn las is given, wh g structure, an is given in the g use of concep the sagemath	handle data and save cepts of repeating the red with matrices and non module SymPy is mbolic computations. thich is used to do data introduction to the e second part of the pts from the calculus software so that the				

СО	CO Statement	Cogniti ve Level*	Knowledg e Category #	Evaluation Tools used
CO1	Develop proficiency in fundamental to advanced Python programming concepts, including variables, data types, control structures, functions, modules, file handling, and matrix operations.	С	С	Internal Exam/Quiz/E nd Sem
CO2	Demonstrate competence in data visualization techniques using Matplotlib, encompassing plotting mathematical functions, 2D and 3D graphics, and animated plots.	Ар	С	Internal Exam /Assignment/ End Sem
CO3	Develop proficiency in symbolic computation with SymPy, data manipulation with Pandas, and algebraic computations with SageMath, enabling them to solve diverse mathematical problems numerically and analytically.	С	С	Internal Exam /viva/ Seminar/End Sem
# - Fa	emember (R), Understand (U), Apply (Ap), Analyse (Actual Knowledge(F) Conceptual Knowledge (C) Proceededge (M)			

Textbook		 Ajith Kumar B.P., Python for Education, <u>https://scischool.in/python/pythonForEducation.pdf</u> Gregory V. Bard, Sage for Undergraduates (online version) <u>http://www.people.vcu.edu/~clarson/bard-sage-for-undergraduates</u> <u>2014.pdf</u> Tuan A. Le and Hieu D. Nguyen, SageMath Advice For Calculus, <u>https://users.rowan.edu/~nguyen/sage/SageMathAdvices</u> <u>ulus.pdf</u> 					
Module	Unit	Content	Hrs (45+ 30)				
		Introductory Python and Arrays					
		(Text 1: Chapter 2, Chapter 3)					
	1	Section 2.1: Getting started with Python					
		Section 2.2: Variables and Data Types, Keywords,					
		Section 2.3: Operators and their Precedence.					
	2	Section 2.4: Python Strings					
		Section 2.5: Python Lists					
		Section 2.6: Mutable and Immutable Types.					
		Section 2.7: Input from the Keyboard					
		Section 2.8: Python Syntax, Colon & Indentation					
	3	Section 2.9: Controlling the Programe Flow	-				
Ι		Section 2.10: Iteration: for loops					
		Section 2.11: Conditional Execution: if, elif and else	12				
		Section 2.12: Modify loops: break and continue					
	4	Section 2.15: Functions					
		Section 2.17: Python Modules and Packages.					
		Section 2.18: File Input/Output					
		Section 2.19: Formatted Printing.					
		Section 2.21: Matrices in pure Python.					
	5	All topics up to Section 3.1,					
		Section: 3.1: NumPy Arrays					
	6	Section: 3.2: Vectorizing Functions.]				
		Data Visualization					
II		(Text 1: Chapter 4)					

	7	Section: 4.1: The Matplotlib Module	1
		*	-
	8	Section: 4.2: Plotting mathematical functions	
		Section: 4.3: Plotting Error Bars,	
		Section: 4.4: Simple 2D animation.	10
	9	Section: 4.5: Famous Curves	
		Section: 4.6: 2D plot using colors.	
	10	Section: 4.7: 3D Plots.	
		Introduction to SymPy and Pandas	
	11	(Text 1: Chapter 5 and Chapter 6) All topics up to Section 5.1,	
		Section 5.1: SymPy, Symbolic Computation in Python.	
	12	Section 5.2: SymPy, Derivative and Integral	-
III	13	Section 5.3: SymPy, Operation on sets	10
	14	Section 6.1: Series	-
	15	Section 6.2: Data Frame	
	16	Section 6.3: Practical Examples	
		Sagemath – An Introduction	
		(Text 2: Chapter 1, For units 17,18,19)	
	17	Getting and installing sagemath in Windows, Ubuntu OS Using sagemath using cocalc (online)	
		Section 1.1: Using Sage as a Calculator	
		Section 1.2: Using Sage with Common Functions	
		Section 1.3: Using Sage for Trigonometry	
IV	18	Section 1.5: Matrices and Sage, Part One	-
		1.5.1: A First Taste of Matrices	13
			15
		1.5.3: Doing the RREF in Sage	
	19	1.5.3: Doing the RREF in Sage Section 1.5: Using Sage to Manipulate Polynomials	
	19		-
	19 20	Section 1.5: Using Sage to Manipulate Polynomials	-
	20	Section 1.5: Using Sage to Manipulate Polynomials (Text 3: Chapter 2, 3, 5, For units 20,21,22)	
		Section 1.5: Using Sage to Manipulate Polynomials(Text 3: Chapter 2, 3, 5, For units 20,21,22)Section 2.1: Plotting Graphs	

22	Section 5.1: Antiderivatives (Indefinite Integral),	
	Section 5.2: Riemann Sums and the Definite Integral	
	All topics up to 5.2.1,	
	5.2.1: Riemann Sum Using Left Endpoints	
	Practical (Open-ended)	
	Online References for Practical	30
1	Python official website and documentation,	
2	1,2	
3	https://www.spyder-ide.org/ Getting Started: Python and IDLE, MIT Courseware, https://web.mit.edu/6.s189/www/handouts/GettingStarted .html	
4	Jupyter Notebook, <u>https://jupyter.org/</u>	
5 6	Google Colaboratory (colab), <u>https://colab.google/</u> Pydroid 3 IDE for Android (<u>https://play.google.com/store/apps/details?id=ru.iiec.pyd</u>	
	roid3&hl=en_US&pli=1) with Pydroid 3 repository plugin	
	(https://play.google.com/store/apps/details?id=ru.iiec.pyd roid3.quickinstallrepo≷=US).	
Practi	cal problems in basic Python	
1)	Write a programme to work as a basic Income Tax Calculator	
2)	Write a program that takes the length of an edge (an integer) as input and prints the cube's surface area as output.	
3)	Write a loop that counts the number of space characters in a string. Recall that the space character is represented as ''.	
4)	Write a while loop that computes the factorial of a given integer N.	

5)	Write a program that computes square roots.
6)	Write a programme for data Encryption based on Caeser shift.
7)	Develop a program that computes the Flesch Index for a text file.
8)	Using a List to Find the Median of a Set of Numbers
9)	Finding the Mode of a List of Values.
Numer 7.10, 7	rical methods using python (Text1: Chapter 7)(7.1 - .12)
1)	Evaluate a Taylor series numerically.
2)	Interpolate a function using
	a) Newton's forward interpolation
	b) Newton's backward interpolation
	c) Lagrange's Interpolation
	d) Newton's General Interpolation
3)	Find integral of function using
	a) Trapezoidal rule
	b) Simpson's 1/3-rule
4)	Find derivative of function numerically.
5)	Solve first order differential equations numerically.
	a) Euler method
	b) Fourth order Runge-Kutta method
6)	Solve algebraic equations numerically.
	a) The Bisection method
	b) Regula Falsi Method
Practi sympy	cal problems using numpy, matplotlib, pandas and
1)	Various vector operations. such as dot product, cross product and divergent using numpy module.
2)	Various matrix operations such as determinant, inverse and transpose using numpy module.
3)	Solve system of linear equations using numpy module.
4)	Plot various 2-D, 3-D curves using matplotlib module.

	5) Plot various 3-D surfaces using matplotlib module.
	6) Find maxima and minima of a function using SymPy module.
	 Necessary data analysis of a given data using pandas module.
]	Practical problems in Sage
	1) Solve a system of linear equations (Text 2)
	 Constrained Optimization by Lagrange Multipliers (Text 2, 4.18.2)
	3) Traffic Flow (Text 3)
	4) Minimum Cost (Text 3)
	5) Packaging (Minimum Surface Area) (Text 3)
	6) Maximize Revenue (Text 3)
	7) Area Between Curves (Text 3)
	8) Average Value and mean value theorem (Text 3, 6.2)
	9) Newton's Method to find approximate roots (Text 3)
References:	
1 Amit Sage-cc 2 Vernon 3 Python 4 2D plot 5 3D Gra 6 Linear 7 John Ha Sage-cc 8 Paul Zi SageMa	aha, Doing Math with Python, No Starch Press, 2015. a L. Ceder, The Quick Python Book, Second Edition, Manning. tutorial online, https://www.geeksforgeeks.org/python-programming-language/ tting, https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html uphics, https://doc.sagemath.org/html/en/reference/plot3d/index.html Algebra, https://doc.sagemath.org/html/en/tutorial/tour_linalg.html arris, Karen Kohl, and John Perry, Peering into Advanced Mathematics through olored Glasses mmermann, Alexandre Casamayou, Computational Mathematics with ath, <u>https://www.sagemath.org/sagebook/english.html</u> th A Lambert, Fundamentals of Python First Programs, Edn 2, Cengage

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	1	3	2	3	3	1	1	2
CO 2	2	2	3	1	3	2	3	3	1	1	2
CO 3	2	2	3	1	3	2	3	3	1	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Quiz
- Practical Based Assessment
- Final Exam (70%)

	Internal Exam	Assignment	Semi nar	Quiz	Viva	Practical based assessment	End Semester Examinations
CO 1				\checkmark		\checkmark	\checkmark
CO 2	\checkmark	\checkmark				\checkmark	\checkmark
CO 3			\checkmark			\checkmark	V

Programme	B. Sc. Mathematics Honours						
Course Code	MAT5CJ301						
Course Title	REAL ANALYSIS	Ι					
Type of Course	Major						
Semester	V						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites		c and necessary exposure	to set theory.				
	2. Basic Calculus						
	3. Real Analysis I						
Course		tions are introduced rigor					
Summary		uvalent sequential crit					
		Liemann) Integrable funct					
	by the fundamental theorem of calculus connecting the two notions. The						
	course concludes with	h a discourse on series of	functions and	l various results			
	discussing the compa	atibility of the above the	ree notions w	ith the limiting			
	operations on series of	of functions.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse and explain the concept	An	С	Internal
	of continuous functions and their			Exam/Assignment/
	properties on intervals, and apply			Seminar/
	the principles of uniform			Viva/Report/ End
	continuity.			Sem Exam
CO2	Analyse the vitality of continuous	An	С	Internal
	functions when they are defined			Exam/Assignment/
	on intervals.			Seminar/
				Viva/Report/ End
				Sem Exam
CO3	Apply the derivative and the	Ap	Р	Internal
	Mean Value Theorem to solve			Exam/Assignment/
	problems and prove related			Seminar/
	theorems.			Viva/Report/ End
				Sem Exam
* - Reme	mber (R), Understand (U), Apply (A	p), Analyse (An), Evaluate ((E), Create (C)
# - Factua	al Knowledge(F) Conceptual Knowle	edge (C) Proc	edural Knowle	dge (P)
Metacogr	nitive Knowledge (M)			

.

.

Textbook	Wiley	luction to Real Analysis, 4/e, Robert G Bartle, Donal & Sons(2011)		
Module	Unit	Content	Hrs (45+30)	Marks Ext:70
Ι		Continuous Functions		
	1	Section 5.1 – Continuous functions		
	2	Section 5.3 – Continuous functions on intervals — 5.3.1 to 5.3.5		
	3	Section 5.3 – from 5.3.7 - 5.3.10	14	Min.15
	4	Section 5.4 – Uniform Continuity-up to 5.4.3	-	
	5	Section 5.4 – Uniform Continuity-5.4.4 to	-	
		5.4.14(proof of Weierstrass Approximation Theorem is optional)		
	6	Selected problems from the above sections.	1	
II		Differentiation		
	7	Section 6.1 – The Derivative – 6.1.1 to 6.1.7	1	
	8	Section 6.2- The Mean Value Theorem - 6.2.1 to 6.2.6	10	Min.1
	9	Section 6.2 - from 6.2.7 to 6.2.9		
	10	Section 6.2-The Mean Value Theorem- 6.2.10 to 6.2.13		
	11	Selected problems in the above sections.	-	
III		The Riemann Integral		
	12	Section 7.1 – Riemann Integral – up to 7.1.4 (a)	-	
	13	Section 7.1 – from 7.1.5 to 7.1.7		
		(proof of 7.1.7 is optional)		
	14	Section 7.2 – Riemann Integrable functions – 7.2.1 to	1	
		7.2.5 (Examples 7.2.2 are optional)		
	15	Section 7.2 – from 7.2.7 to 7.2.13	14	Min.20
	16	Section 7.3 – The Fundamental Theorem – 7.3.1 to $7.3.7$		
	17	Section 7.3 – from 7.3.8 to 7.3.18 (proof of theorem 7.3.18 is optional)		
	18	Selected problems in the above sections.	1	
IV		Sequences and Series of functions		
	19	Section 8.1 – Pointwise and Uniform Convergence –		
		8.1.1 to 8.1.3		
	20	Section 8.1 – from 8.1.4 to 8.1.10	7	Min.1
	21	Section 8.2 – Interchange of limits – 8.2.1	_	
	22	Section 8.2 – Interchange of limit and continuity - 8.2.2		
V		Practicum:		
	-	goal is for the students to learn the following selected		
	-	s in 15 practicum sessions of two hours each via self-		
	-	and group activities. The lecturer should assist them		
		ning group discussions, overseeing class seminars and		
		ring library books for self-study and note preparation.		
	1	Section 5.2 – Combinations of continuous functions	30	
	2	Section 5.6 – from 5.6.5 to 5.6.7		

3	Section 6.1 – Inverse Functions – 6.1.8 to 6.1.10	
4	Section 6.3 – L'Hospital's Rule -from 6.3.5 to 6.3.7	
5	Section 6.4 – Taylor's theorem – 6.4.1 to 6.4.4	
6	Section 8.2 – Interchange of Limits – 8.2.3 and 8.2.4	
7	Section 9.1 – Absolute Convergence – 9.1.1 to 9.1.3	
8	Section 9.1 – 9.1.4 to 9.1.5	
9	Section 9.2 – Limit Comparison Test with examples	
10	Section 9.2 – Root Test with examples	
11	Section 9.2 – Ratio Test with examples	
12	Section 9.2 – Integral Test with examples	
13	Section 9.2 – Raabe's Test with examples	
14	Section 9.3 – Alternating Series Test	
15	Section 9.4 – Infinite Series – Series of Functions –	
	9.4.1 to 9.4.7	

Reference

- 1. Apostol, Tom M. Calculus, Volume 1. John Wiley & Sons, 1991.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley, 2002.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley, 2020
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics,2/e, John Wiley & Sons
- 5. Malik, Subhash Chandra, and Savita Arora. Mathematical analysis. New Age International, 1992.

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	2	0	2	0	3	0	0
CO 2	2	2	2	1	2	0	2	0	3	0	0
CO 3	3	2	3	1	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	\checkmark	~	~	\checkmark
CO 3	\checkmark	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT5CJ302	MAT5CJ302					
Course Title	ABSTRACT ALGE	ABSTRACT ALGEBRA I					
Type of Course	Major	Major					
Semester	V						
Academic	300-399						
Level							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Basic set theory, algo techniques etc.	ebra of Integers, operation	ns on function	s, basic proof			
Course Summary	This course explores the algebraic concepts of Binary Operations, Binary Structures, Groups, Rings, Integral Domains and Fields. We further study the Theory of Groups. Elementary properties, Subgroups, Finite Groups, Cyclic Groups, Groups of Permutations, Orbits, Cycles, Alternating Groups, Cosets and the Theorem of Lagrange are studied. Then we study mappings between groups or Homomorphisms. Finally, the Open-ended section points to Generating sets, Factor Groups and Field of Quotients of an Integral Domain.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Discuss about binary operations, isomorphic binary structures and groups	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO2	Analyse and classify subgroups and cyclic groups, and determine their properties using group theory.	An	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO3	Evaluate and apply theorems related to cosets, Lagrange's theorem, homomorphisms, rings, and fields to solve complex algebraic problems.	Е	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
# - Fact	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

.

Text book	A first course in abstract algebra, Fraleigh, John B. Seventh Edition, Pearson Education India, 2003							
le	Unit	Content	Hrs	Marks				
Module			(48+12)	Ext(70)				
Ι		Module I						
	1	Section 2- Binary Operations (2.1 to 2.10)						
	2	Section 2- Binary Operations (2.11 to 2.25)						
	3	Section 3- Isomorphic Binary Structures (3.1 to 3.11).						
	4	Section 3- Isomorphic Binary Structures (3.12 to 3.17)	12	Min.15				
	5	Section 4- Groups (4.1 to 4.14)						
	6	Section 4- Groups – Elementary Properties of Groups, Finite Groups and Group tables (4.15 onwards)						
II		Module II						
	7	Section 5- Subgroups (5.1 to 5.16)						
	8	Section 5 -Subgroup - Cyclic Subgroups (5.17 to 5.23)						
	9	Section 6 -Cyclic Groups (6.1 to 6.9) (Proof of Theorem 6.3 is optional)	14	Min.15				
	10	Section 6- Cyclic Groups (6.10 to 6.17) (Proof of Theorem 6.14 is optional).1						
	11	Section 8-Groups of Permutations (up to 8.6)						
	12	Section 8- Groups of Permutations (8.7 to 8.18)						
III		Module III						
	13	Section 9 - Orbits, Cycles, and the Alternating Groups (Up to 9.10)						
	14	Section 9 - Orbits, Cycles, and the Alternating Groups (9.11 to 9.21) (Proof 2 of theorem 9.15 is optional).	10	Min.15				
	15	Section 10- Cosets and the theorem of Lagrange (Up to 10.9)	10	11111.15				
	16	Section 10- Cosets and the theorem of Lagrange (10.10 to 10.14)						

IV		Module IV		
	17	Section 13- Homomorphisms (13.1 to 13.10)		
	18	Section 13-Homomorphism (13.11 to 13.20)		
	19	Section 18-Rings and Fields (18.1 to 18.13)	12	Min.15
	20	Section 18-Rings and Fields (18.14 to 18.18)		
	21	Section 19-Integral Domains (19.1 to 19.8)		
	22	Section 19-Integral Domains (19.9 to 19.15)		
V		Module V (Open Ended)		-
		Generating Sets in Groups		
		Factor Groups	12	
		The Field of Quotients of an Integral Domain		

References

1. Herstein, Israel Nathan. Topics in algebra. John Wiley & Sons, 1991.

2. Gallian, Joseph. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.

3. Wallace, David AR. Groups, rings and fields. Springer Science & Business Media, 2001

4. Reis, Clive. *Abstract algebra: an introduction to groups, rings and fields*. World Scientific Publishing Company, 2011.

5. Allan Clark, *Elements of Abstract Algebra*, Dover Publications, 1984

6. C Musili, Introduction to Rings and Modules, Narosa Publications, 2009

Suggested Programming Exercises for Open-Ended

- 1. Form congruence groups, their Cayley tables (Section 9.2, Ref (3)).
- Form symmetric groups of various orders, list the elements, find the power of some elements, find out the product of some of the elements. Find the order of the elements. Form a group table using conditionals and loops. (Section 9.3, Ref (3) or Ref (1)).
- 3. List *S*₃. Find a subgroup from this group. How many distinct subgroups can be found from this group? List all of them.
- 4. Form the Dihedral group D_4 , check if it is abelian using is_abelian(). Conduct the same experiments as listing the elements ,finding the orders etc as above. (Section 9.4, Ref (3) or Ref (1)).
- 5. Test the command is normal () on a few subgroups of S_3 . (Ref (1)).
- 6. Create cyclic groups. (Section 9.5, Ref (3)).

- 7. Form finitely generated abelian groups. (Section 9.6, Ref (3)).
- 8. Form a subgroup of a group (say, S_3) (Section 9.8, Ref (3)).

References

- 1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed. edu/~davidp/332/sage-group-theory.pdf
- 2. Group Theory and Sage SageMath tutorial https://doc.sagemath.org/html/ en/thematic_tutorials/group_theory.html
- 3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.
- 4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	2	0	0	0	2	0	0
CO 2	1	2	3	0	2	0	2	0	3	0	0
CO 3	0	1	2	3	2	0	3	0	3	0	0

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	\checkmark	~	~	✓
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics H	Ionours					
Course Code	MAT5CJ303						
Course Title	COMPLEX ANALY	I SIS I					
Type of Course	Major						
Semester	V						
Academic	300-399						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basics of Real Numb	er System and Calculus.					
Course	e	ith the concepts of comp					
Summary		mbers, powers and root					
		power functions and nth					
	limits, continuity, differentiability and analyticity of complex functions. Cauchy						
	Riemann equations and Harmonic conjugates are also studied. Finally the course						
	discusses some sta	ndard complex function	ons like Exp	onential functions,			
		s, Trigonometric and Hy					
G 0 (

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used				
		Level*	Category#					
CO1	Understand and explain the properties and representations of complex numbers, including their polar form and operations.	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO2	Apply the principles of limits, continuity, and differentiability to complex functions and utilize the Cauchy-Riemann equations.	Ар	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
CO3	Evaluate and create complex exponential, logarithmic, trigonometric, and hyperbolic functions, understanding their properties and applications.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam				
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Textbook	-	x Analysis (Third Edition): Dennis G. Zill & Patric D. Shan Learning, 2018.	ahan,	Jones &						
Module	Unit	Content	Hrs 60	External Marks (70)						
		Module I								
	1	Section 1.1-Complex Numbers and Their Properties		Min.15						
I	2									
		 3 Section 1.3- Polar Form of Complex Numbers 4 Section 1.4- Powers and Roots 								
	4	-								
	5	Section 1.5 -Sets of Points in Complex Plane								
		Module II	-							
	6	Section 2.1 -Complex FunctionsSection 2.2- Complex Functions as Mappings- up to and	-							
	7		Min.15							
		including Example 4.	-	MIN.15						
Π	8	Section 2.4- Special Power Functions- The Power Function z^n (All the topics in 2.4.1)	12							
		Section 2.4- Special Power Functions-The power function	14							
	9									
		$z\overline{n}$ (Topics in 2.4.2, up to and including Example 5.)	-							
	10	Section 2.4- Special Power Functions-Principal nth Root								
		Functions and Example 9.								
		Module III Section 2.1 Limits and Continuity Limits (All the tonics in	-							
	11	Section 3.1- Limits and Continuity-Limits (All the topics in 3.1.1)								
		Section 3.1- Limits and Continuity-Continuity (Topics in	-							
	12									
		3.1.2, up to Example 7.)Section 3.1-Limits and Continuity-Continuity (Theorem		Min.20						
	13	3.1.4 to up to and including a bounding property.								
	1.4	Section 3.2- Differentiability and Analyticity- up to and								
III	14	including Example 2.	15							
	15	Section 3.2- Differentiability and Analyticity- All the								
	15	topics after Example 2.								
	16	Section 3.3- Cauchy-Riemann Equations-up to and								
	10	including Theorem 3.3.2								
		Section 3.3 - Cauchy Riemann Equations: -All the topics								
	17	after								
	10	Theorem 3.3.2.								
	18	Section 3.4 - Harmonic Functions								
		Module IV	4							
IV		Section 4.1 Exponential and Logarithmic Functions-	8							
	19	Complex Exponential Function (Topics in 4.1.1 up to and		ML 15						
		including Periodicity)		Min.15						

	20	Section 4.1 Exponential and Logarithmic Functions- Complex Logarithmic Function (Topics in 4.1.2 up to and		
		including Example 4)	4	
		Section 4.3 Trigonometric and Hyperbolic Functions-		
	21	Complex Trigonometric Functions (Topics in 4.3.1, up to		
		and excluding trigonometric mapping.)		
	22	Section 4.3 Trigonometric and Hyperbolic Functions-		
		Complex Hyperbolic Functions (All the topics in 4.3.2)		
		Module V (Open Ended)		
V		Linear Mappings, Reciprocal Functions	12	
		Branches, Branch Cuts and Points, Complex Powers]	
		Inverse Trigonometric and Hyperbolic Functions.	1	

References

- 1. Brown, James Ward, and Ruel V. Churchill. Complex variables and applications. McGraw-Hill, 2009.
- 2. Stein, Elias M., and Rami Shakarchi. Complex analysis. Vol. 2. Princeton University Press, 2010.
- 3. Burckel, Robert B. An Introduction to Classical Complex Analysis: Vol. 1. Vol. 64. Birkhäuser, 2012
- 4. Hormander, Lars. An introduction to complex analysis in several variables. Elsevier, 1973.
- 5. Priestley, Hilary A. Introduction to complex analysis. OUP Oxford, 2003.
- 6. Silverman, Richard A. Introductory complex analysis. Courier Corporation, 2013
- 7. Bak, Joseph, Donald J. Newman, and Donald J. Newman. *Complex analysis*. Vol. 8. New York: Springer, 2010.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	0	0	3	0	0	0	2	0	0
CO 2	0	3	1	0	2	0	3	0	3	0	0
CO 3	1	0	3	0	2	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	✓	✓	~	\checkmark
CO 3	\checkmark	✓	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours						
Course Code	MAT6CJ304 / MAT8	MAT6CJ304 / MAT8MN304						
Course Title	COMPLEX ANALY	ISIS II						
Type of Course	Major							
Semester	VI							
Academic	300-399							
Level								
	Credit	Lecture/Tutorial	Practicum	Total Hours				
Course Details		per week	per week					
Course Details	4	4	-	60				
Pre-requisites	Analyticity. As a Part	bers, Polar representation II course, it is desirable t ex Analysis I) learned in	to have the new	cessary details of				
Course Summary	integrals, followed b Cauchy's Integral for studied. It is then follo	We continue from Complex Analysis-I and begin by discussing complex integrals, followed by Cauchy-Goursat Theorem. Independence of path, Cauchy's Integral formula, sequence and series of complex numbers are next studied. It is then followed by Taylor series, Laurent series. zeros and poles, and Residue Theorem. Applications of Residue theorem are also discussed.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and apply the principles of real and complex integrals, including the Cauchy-Goursat theorem	Ар	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Analyse the independence of path and evaluate the Cauchy's integral formulas, along with understanding their consequences and applications.	An	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Create and utilize Taylor and Laurent series, and apply the residue theorem to evaluate complex functions and integrals.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
# - Fac	member (R), Understand (U), Apply (Ap ctual Knowledge(F) Conceptual Knowle ledge (M)		· · ·	

Textbook	-	olex Analysis (Third Edition): Dennis G. Zill & Patric D. & Bartlett Learning, 2018.	Shana	han,				
Module	Unit							
		Module I	-					
	1	Section 5.1-Real Integrals.	_					
	2	2 Section 5.2-Complex Integrals-up to and including						
		Example 2	-					
т	3 Section 5.2- Complex Integrals- All the topics after		Min.15					
Ι		Example 2	12	WIII.15				
	4	Section 5.3- Cauchy- Goursat Theorem-up to and						
	5	including Example 4. Section 5.3 -Cauchy- Goursat Theorem-All the topics	-					
	5	after						
		Example 4.						
		Module II						
	6	Section 5.4- Independence of Path	-					
		Section 5.5 -Cauchy's Integral Formulas and Their	-					
	7	Consequences- Cauchy's Two Integral Formulas (All the						
		topics in 5.5.1)						
п		Section 5.5 -Cauchy's Integral Formulas and Their	12	Min.15				
II	8	Consequences- Some Consequences of the Integral						
		Formulas (All the topics in 5.5.2)						
	9	Section 6.1 -Sequences and Series- up to and including						
	9	Example 4.						
	10	Section 6.1- Sequences and Series- All the topics after						
	10	Example 4.						
		Module III	-					
	11	11 Section 6.2 - Taylor Series-up to and Excluding Theorem						
		6.2.4.						
	12	Section 6.2- Taylor Series-From Theorem 6.2.4 to						
		Example 3.	-					
Ш	13	Section 6.3 -Laurent Series-up to and including Example 1.	14					
111		Section 6.3- Laurent Series- All the topics after Example	14					
	14	1(proof of Laurent's Theorem is optional)						
		Section 6.4 -Zeros and Poles- up to and including	1					
	15	Example 2.						
		Section 6.4- Zeros and Poles- All the topics after	-					
	16	Example 2.						
		Module IV						
	17	Section 6.5 -Residues and Residue Theorem-up to and	1					
IV	17	including Example 3.	10					
	18	Section 6.5 - Residues and Residue Theorem-All the	1					
	10	topics after Example 3.						

	19 20 21	Section 6.6- Some Consequences of the Residue Theorem- Evaluation of Real Trigonometric Functions (up to and including example1 of 6.6.1) Section 6.6 -Some Consequences of the Residue Theorem- Evaluation of Real Improper Integrals (up to and including Example 2) Section 6.6 -Some Consequences of the Residue Theorem- Theorem 6.6.1 and Example 3.		Min.15
	22	Section 6.6 -Some Consequences of the Residue Theorem- Theorem 6.6.2 and Example 4.		
		Module V (Open Ended)		
V		Definite Integrals, Line Integrals in the Plane, Indented		
v		Contours	12	
		Integration along a Branch Cut, The Argument Principle		
		Rouche's Theorem and its applications		
Referen	ces			
	1	Brown, James Ward, and Ruel V. Churchill. Complex vari applications. McGraw-Hill, 2009.	ables ar	nd
	2	Stein, Elias M., and Rami Shakarchi. Complex analysis. V University Press, 2010.	ol. 2. Pı	rinceton
	3	Burckel, Robert B. An Introduction to Classical Complex A Vol. 64. Burkhouse, 2012.	Analysi	s: Vol. 1.
	4	Hormander, Lars. An introduction to complex analysis in s Elsevier, 1973.	several	variables.
	5	Priestley, Hilary A. Introduction to complex analysis. OUF	• Oxfor	d, 2003.
	6	Silverman, Richard A. Introductory complex analysis. Cou 2013.		
	7	Bak, Joseph, Donald J. Newman, and Donald J. Newman. <i>Com</i> 8. New York: Springer, 2010.	plex ana	alysis. Vol.

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	1	0	3	0	3	0	3	0	0
CO 2	1	2	1	0	2	0	3	0	3	0	0
CO 3	1	2	1	0	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	Programme B. Sc. Mathematics Honours										
Course Code	MAT6CJ305 / N	MAT6CJ305 / MAT8MN305									
Course Title	ELEMENTA	ELEMENTARY NUMBER THEORY									
Type of Course	Major										
Semester	VI										
Academic Level	300-399										
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours							
		per week	per week								
	4	4	-	60							
Pre-requisites	Arithmetic of i	ntegers, basic set theory	and proof tech	hniques.							
Course Summary	Euclidean algori equations like an Arithmetic, disc Following that, theorem, and Fe	theory with the division thm for computing it, es x + by = c. We then prov- uss the infinitude of prin- we cover Linear Congru- rmat's Little Theorem. F s Phi Function, and Eule	ssential for solve the Fundame mes and the sie lences, the Chi Finally, we exp	ving Diophantine ental Theorem of eve of Eratosthenes. nese Remainder							

Course Outcomes:

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the division algorithm and Euclidean algorithm to compute greatest common divisors (gcd) and solve related divisibility problems.		С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Solve Diophantine equations for integer solutions, deduce prime factorization through the fundamental theorem of arithmetic, and identify prime numbers using the sieve of Eratosthenes.		C	Internal Exam/ Assignment/ Seminar/Viv a/ End Sem Exam
CO3	Apply the properties of congruence and the Chinese Remainder Theorem to solve systems of linear congruences.		С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
# - Fac	mber (R), Understand (U), Apply (Ap), Anal ctual Knowledge(F) Conceptual Knowledge edge (M)	• • •		. ,

Textbook	Elem (2007)	entary Number Theory, David Burton, M, Seventh E	dition, N	Icgraw – Hil
Module	Unit	Content	Hrs (60)	External Marks (70)
I		Module I		
	1	Section 2.2 The division algorithm (proof of theorem 2.1 omitted).	12	Min.15
	2	Section 2.3 The greatest common divisor - up to and including theorem 2.3 and its corollary.		
	3	Section 2.3 The greatest common divisor - All topics from definition 2.3 onwards.		
	4	Section 2.4 The Euclidean algorithm - up to Theorem 2.7.		
	5	Section 2.4 The Euclidean algorithm - All topics from Theorem 2.7 onwards.		
II		Module II		
	6	Section 2.5 The Diophantine equation $ax+by = c - up$ to and including Theorem 2.9.		
	7	Section 2.5 - All topics from Example 2.4 onwards.		
	8	Section 3.1 The fundamental theorem of arithmetic – up to Theorem 3.2.	11	Min.15
	9	Section 3.1 The fundamental theorem of arithmetic – All topics from Theorem 3.2 onwards.		
	10	Section 3.2 The sieve of Eratosthenes (up to and including theorem 3.4 only)		
III		Module III		

IV		Module IV		
	17	Section 5.3 Wilson's theorem - Up to Theorem 5.5.		
	18	Section 5.3 Wilson's theorem - All topics from Theorem 5.5 onwards.	12	Min.15
	19	Section 7.2 Euler's phi-function - up to Lemma.		WIII.13
	20	Section 7.2 Euler's phi-function - All Topics from Lemma onwards. (proof of Theorem 7.2 omitted).		
	20 21	· · ·		
		Lemma onwards. (proof of Theorem 7.2 omitted). Section 7.3 Euler's theorem. (Second proof of Euler's		

	Proof of Theorem 4.8. Chinese Remainder Theorem and remaining portions of Section 4.4	12	
	Section 6.1 The sum and the number of divisors Linear congruences and the Chinese remainder theorem.	12	
	Section 6.3 The Greatest Integer Function - up to Theorem 6.11.		
References			

- 1. Rosen, Kenneth H. Elementary number theory. London: Pearson Education, 2011.
- 2. Eynden, Charles Vanden. *Elementary number theory*. Waveland Press, 2006.
- 3. Gehring, F. W., and P. R. Halmos. Graduate Texts in Mathematics, 1976.
- 4. Hsiung, C. Y. Elementary theory of numbers. World Scientific, 1992.
- 5. Hoffman P., The man who loved only numbers: The story of Paul Erdös and the search for mathematical truth, Little Brown & Company, 1999.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1	0	0	3	0	3	0	3	0	0
CO 2	1	1	0	0	3	0	3	0	3	0	0
CO 3	0	0	1	0	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT6CJ306 / 1	MAT6CJ306 / MAT8MN306					
Course Title	METHODS O	F DIFFERENTIAL EQUA	ATIONS				
Type of Course	Major						
Semester	VI						
Academic	300-399	300-399					
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Foundations of	basic calculus (0-99 level)					
Course	The course enh	nances the skill to solve or	dinary differen	itial equation using			
Summary	specific method	pecific methods analytically and computationally for first and higher order					
	differential equa	ations.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Classify and solve first order differential equation by applying appropriate methods	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Apply different methods to solve higher order homogeneous and non- homogeneous linear differential equations with constant coefficients	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Use Laplace transform and inverse Laplace transform to solve linear differential equations	Ар	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
# - Fa	member (R), Understand (U), A ctual Knowledge(F) Conceptual ledge (M)			

•

.

Textbook	Арр	nis G. Zill , A First Course in Differential Equations wit lications 10 th Edn, Cengage Learning (2012) ISBN-13 9′					
Module	Un	Content	Hrs	Marks			
	it		(60)	Ext: 70			
		First order differential equations	-				
		Quick review of Introduction to differential equations					
		(Definitions only)	-				
	1	2.1.1-Direction Fields	-				
Ι	2	2.1.2 - Autonomous First-Order DEs	14				
-	3	2.2 - Separable Equations		Min.15			
	4	2.3 - Linear Equations	-				
	5	2.4- Exact Equations	-				
	6	2.5- Solutions by Substitutions	-				
	7	Problems from the above sections					
		Higher-Order Differential Equations	-				
	8	4.1.1 Initial-Value and Boundary-Value Problems					
	9	4.1.2 Homogeneous Equations (proof of Theorems 4.1.2	1				
п		and 4.1.5 are optional)	12	Min.15			
II	10	4.1.3 Nonhomogeneous Equations	12				
	11	4.2 Reduction of Order	1				
	12	4.3 Homogeneous Linear Equations with Constant	1				
	12	Coefficients					
		Higher-Order Differential Equations (Cont)					
	13	4.4 -Undetermined Coefficients—Superposition	1				
		Approach (up to and including Example 9)					
	14	4.5 - Undetermined Coefficients—Annihilator Approach	1				
		(up to and including Example 3)					
III	15	4.5 - Undetermined Coefficients—Annihilator Approach	proach				
		(all the topics after Example 3)	14	Min.20			
	16	4.6- Variation of Parameters					
	17	4.7 - Cauchy-Euler Equation (up to and including	1				
		Example 4)					
	18	4.7 - Cauchy-Euler Equation (all the topics after	1				
		Example 4)					
	19	4.9 - Solving Systems of Linear DEs by Elimination]				
		Laplace Transforms					
	20	7.1 Definition of the Laplace Transforms (proof of	1				
IX 7		Theorems 7.1.2 and 7.1.3 are optional)	0	M. 10			
IV			8	Min.10			
	21	7.2.1 Inverse Transforms	1				
	22	7.2.2 Transforms of Derivatives	1				
		Open Ended: Mastering differential equation using					
		software					
	IVP	and BVP Problem-solving using mathematical software]				
V	like	Sage/Python/ Mathematica/Matlab/ Maple/Scilab etc	12				
		tructor may choose any software appropriately)					
	Sugg	gestions:					
		 Plotting solution curves -2 hrs 					

		 Solve first order initial value problems -2 hrs Solve second order initial value problems -2 hrs Plot Laplace transform of given function -2 hrs find Laplace transform and inverse Laplace transform - 2 hrs Solve the initial value problem using Laplace transform -2 hrs 		
Re	eferences			
1.		nmons and S. G. Krantz, Differential Equations: Theory, Techniq	ue, and I	Practice,
	McGraw	Hill (2006), ISBN-13. 978-0072863154		
2.		ddington, An Introduction to Ordinary Differential Equations, Pre	entice Ha	all India
	· · · ·	SBN: 9788120303614		
3.		e, Richard C. Diprima, Douglas B Meade, Elementary Differentia		
		y Value Problems, 11 Edn. William John Wiely & Sons (2017) IS		
4.		F. Trench, Elementary Differential Equations with Boundary Val	ue Probl	ems,
		(G/L) & Company Ltd (2013) ISBN 13: 9780534368418.		
5.		ss, Differential Equations, 3rd edition, Wiley India, (2007) ISBN-	13.978-	
	8126515	370		
6.		. Abell, James P. Braselton, Differential Equations with Mathema	atica, 5th	n edn.
		Science Publishing Co Inc (2022), ISBN: 9780128241608		
7.		na, Doing Math with Python", No Starch Press, US . (2015), ISBN	V 13 978	-
	1593276	409		

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	0	3	0	0
CO 2	2	3	1	2	3	0	3	0	3	0	0
CO 3	2	1	3	3	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT7CJ401							
Course Title	MATHEMATICAL	MATHEMATICAL ANALYSIS						
Type of Course	Major	Major						
Semester	VII							
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	e e	ic and necessary exposur	e to set theory.					
	2. Basic Calculus	1 4 1 ' 77						
	3. Real Analysis I, R			1				
Course		real line is explored in d						
Summary		ng of the theory of real						
		rigorously covered. R		•				
		ralisation of the Riemar						
		he student to view summ		•				
		extensions of the same concept. After a discourse on series of functions and						
	various results discussing the compatibility of the above three notions with t							
		on series of functions,		oncludes with a				
	presentation of the fa	mous Stone-Weierstrass	Theorem.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and differentiate between finite, countable, and uncountable sets, and apply these concepts to problems in R	An	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Evaluate the properties of compact, perfect, and connected sets in the context of metric spaces.	Ε	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the principles of continuity, differentiability, integrability and convergence of sequences and series including the application of the Mean Value Theorem and L'Hospital's Rule, to solve complex problems involving real-valued and vector-valued functions.	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
	ember (R), Understand (U), Apply al Knowledge(F) Conceptual Kno lge (M)			

Module	Inc(201 Unit	Content	Hrs (45+30)	Externa Marks (70)
Ι		Basic Topology of the Real Line		
	1	Chapter 2 – Finite, Countable & Uncountable Sets – 2.1 to 2.14		
	2	Chapter 2 – Metric Spaces – 2.15 to 2.24		
	3	Chapter 2 – Metric Spaces – 2.25 to 2.30	13	Min.15
	4	Chapter 2 – Compact Sets – 2.31 to 2.42		
	5	Chapter 2 – Perfect Sets – 2.43 to 2.44		
	6	Chapter 2 – Connected Sets – 2.45 to 2.47		
II		Continuity and Differentiation		
	7	Chapter 4 – Limits of Functions and Continuous		
		Functions -4.1 to 4.12		
	8	Chapter 4 – Continuity and Compactness – 4.13 to 4.21		
	9	Chapter 4 - Continuity and Connectedness – 4.22 to 4.24		
	10	Chapter 4 – Discontinuities and Monotonic	16	Min.20
		Functions – 4.25 to 4.30		
	11	Chapter 5 – The Derivative – 5.1 to 5.6		
	12	Chapter 5 – Mean Value Theorems – 5.7 to 5.12		
	13	Chapter 5 – L'Hospital's rule, Higher Derivatives		
		& Taylor's Theorem, Differentiation of Vector		
		Valued Functions -5.13 to 5.19 (proof of theorem		
		5.13 and theorem 5.15 are optional)		
III		The Riemann-Stieltjes Integral		
	14	Chapter 6 – Definition and Existence – 6.1 to 6.6		
	15	Chapter 6 – Definition and Existence – 6.6 to 6.11		
	16	Chapter 6 – Properties – 6.12 to 6.13	_	
	17	Chapter 6 – Properties – 6.14 to 6.19 (proof of	9	Min.15
		theorem 6.19 is optional)		
	18	Chapter 6 – Integration & Differentiation – 6.20 to		
		6.22		
IV	10	Sequences & Series of functions		
	19	Chapter 7 – Discussion of Main Problem - 7.1 to		
	20	7.3		
	20	Chapter 7 – Discussion of Main Problem - 7.4 to 7.6	7	Min.10
	21			
	21	Chapter 7 –Uniform Convergence – 7.7-7.10 Chapter 7 –Uniform Convergence & Continuity –		
		7.11 to 7.13		
V		Practicum :	30	-
•	The gos	al is for the students to learn the following selected	50	-
	-	via self-study and group activities. The lecturer may		
	-	y running and overseeing group discussions and class		

	1		
	semina	rs and referring library books for self-study and note	
	prepara	tion.	
	1	Chapter 3 – Convergent Sequences, Subsequences	
	2	Chapter 3 – Cauchy Sequences, Upper and Lower	
		Limits	
	3	Chapter 3 – Some Special Sequences, Series	
	4	Chapter 3 – Series of Non-Negative Terms, The	
		Root and Ratio Tests	
	5	Chapter 3 – Power Series, Absolute Convergence	
	6	Chapter 3 – Addition and Multiplication of Series,	
		Rearrangements.	
	7	Chapter 4 – Infinite Limits & Limits at Infinity –	
		4.32 to 4.34	
	8	Chapter 6 – Integration of Vector-valued Functions	
		and Rectifiable curves - 6.23 to 6.27	
	9	Chapter 7 – Uniform Convergence, Integration and	
		Differentiation – 7.16 to 7.18	
	10	Chapter 7 – Equicontinuity and Stone-Weierstrass	
		Theorem – 7.19 to 7.27	
DC			

References

- 1. Mathematical Analysis, T. M. Apostol, (2nd Edn.); Narosa; 2002.
- 2. Introduction to Real Analysis, R. G. Bartle and D.R. Sherbert:; John Wiley Bros; 1982.
- 3. Real Analysis- a first course, R. A. Gordon: (2nd Edn.); Pearson; 2009.
- 4. Analysis-I, H. Amann and J. Escher, Birkhuser, 2006
- 5. The way of Analysis, Robert Strichartz, (R/e), Jones and Bartlett Mathematics (2000)
- 6. A first course in Real Analysis, M. H. Protter and C. B. Moray, Springer Verlag UTM (1977)

*Optional topics are exempted for end semester examination

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	0	3	0	3	0	3	0	0
CO 2	2	3	2	0	3	0	3	0	3	0	0
CO 3	3	3	3	1	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT7CJ402							
Course Title	GENERAL TOPOI	GENERAL TOPOLOGY						
Type of Course	Major							
Semester	VII							
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	Ũ	ic and necessary exposur	e to set theory.					
	2. Basic Calculus							
	3. Real Analysis I, R	2						
Course	<i>.</i>	al topology is introduced		•				
Summary		of metric spaces. Basic c	A A					
		boundaries, neighbourh						
	introduced. After a	discussion of continuity	and related top	pics, the universal				
	properties of strong	g and weak topologie	s are discusse	ed. Compactness,				
	connectedness, and v	arious countability axion	ns are studied in	some detail. After				
	a detailed study of the hierarchy of separation axioms and their interplay with							
	other properties such	as compactness, the cou	rse concludes v	with a presentation				
	of the famous Urysol	nn & Tietze characterisat	ions of normali	ty.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and classify topological spaces, bases, and subspaces, and apply these concepts to identify examples of different topological structures.	Ар	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and understand the concepts of continuity and related topological properties.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyse their applications in solving problems related to paths and separation.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
	ember (R), Understand (U), Apply 1al Knowledge(F) Conceptual Kno	•	. ,	
Knowle	dge (M)			

.

Textbook	Introduction to General Topology, K. D. Joshi,, New Age International Publishers, 1983.						
Module	Unit	Content	Hrs (45+30)	External Marks (70)			
Ι		Topological Spaces					
	1	Chapter 4 – Section 1: Definition of Topological Space					
	2	Chapter 4 – Section 2: Examples of Topological Spaces					
	3	Chapter 4 – Section 3: Bases and Sub-bases – 3.1 to 3.7	12	Min.15			
	4	Chapter 4 – Section 3: Bases and Sub-bases – 3.8 to 3.10					
	5	Chapter 4 – Section 4: Subspaces – 4.1 to 4.6					
II		Basic concepts					
	6	Chapter 5 – Section 1: Closed Sets and Closure (Proof of Theorem 1.5 is optional)					
	7	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points – 2.1 to 2.8					
	8	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points –2.9 to 2.10 and 2.13	10	Min.15			
	9	Chapter 5 – Section 3: Continuity and Related Concepts – 3.1 to 3.6					
	10	Chapter 5 – Section 3: Continuity and Related Concepts – 3.7 to 3.11					
III		Spaces with special properties					
	11	Chapter 5 – Section 4: Making Functions					
		Continuous, Quotient Spaces – 4.1 to 4.7					
	12	Chapter 5 – Making Functions Continuous,					
	12	Quotient Spaces – 4.8 to 4.12					
	13	Chapter 6 – Section 1: Smallness Conditions on a Space – 1.1 to 1.9	12	Min.15			
	14	Chapter 6 – Section 1: Smallness Conditions on a Space – 1.10 to 1.18					
	15	Chapter 6 – Section 2: Connectedness – 2.1 to 2.6 (Proof of Theorem 2.5 is optional)					
	16	Chapter 6 – Connectedness – 2.7 to 2.15					
IV	10	Separation axioms					
11	17	Chapter 6 – Section 3: Local Connectedness and Paths – 3.1 to 3.8					
	18	Chapter 7 – Hierarchy of Separation Axioms - 1.1 to 1.6.					
	19	Chapter 7 – Hierarchy of Separation Axioms - 1.7 to 1.12	11	Min.15			
	20	Chapter 7 – Hierarchy of Separation Axioms - 1.13 to 1.17					
	21	Chapter 7 – Section 2: Compactness and Separation Axioms - 2.1 to 2.6					

V	Axioms- 2.7 to 2.10	
•	Practicum:	
Practicum	The goal is for the students to learn the following selected	
	topics in 10 practicum sessions of hours each via self-study	
	and group activities. The lecturer may assist by running group	
	discussions, supervising class seminars and referring library	
1	books for self-study and note preparation.	
1	Chapter 1 - Logical Warm-up	
2	Chapter 2 – Preliminaries	
3	Chapter 3 – Motivation for Topology	
4	Chapter 6 - Connectedness: Theorem 2.5 and its proof	
5	Chapter 6 - Local connectedness and Paths - 3.9 to 3.11	20
6	Chapter 7 - Compactness and Separation Axioms - 2.11 to	30
	2.16	
7	Chapter 7 – Section 3: Urysohn Characterisation of	
	Normality -3.1 to 3.4	
8	Chapter 7 – Section 3: Urysohn Characterisation of	
	Normality - 3.5 to 3.6	
9	Chapter 7 – Section 4: Tietze Characterisation of Normality -	
	4.1 to 4.5	
10	Chapter 7 – Section 4: Tietze Characterisation of Normality -	
	4.6 to 4.8	
References	\$	
1. Toj	pology, J. R. Munkres, Prentice Hall of India, 2000.	
2 Ge	neral Topology S Willard Addison Wesley Pub Company 19	976

- 2. General Topology, S. Willard, Addison Wesley Pub. Company, 1976.
- 3. General Topology, J. L. Kelley, D. van Nostrand, 1955.
- 4. Introduction to Topology and Modern Analysis, G. F. Simmons, McGraw-Hill, 1963.

5. Topology, James Dugundji, Prentice Hall of India, 1975.

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	0	3	0	3	0	3	0	0
CO 2	3	2	2	1	3	0	3	0	3	0	0
CO 3	3	3	3	2	3	0	3	0	3	0	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	V	~	>	\checkmark
CO 2	1	\checkmark	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT7CJ403						
Course Title	ABSTRACT ALGEBRA II						
Type of Course	Major						
Semester	VII						
Academic	400-499						
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours			
	4	3	2	75			
Pre-requisites		c and necessary exposure oup Theory	e to set theory.				
Course Summary	introductory courses. products and quotient g Generated Abelian Gr explored in order to con groups. After an introd group actions are intr classifying non-Abelia polynomial rings and th	2. First Course on Group Theory The subject of group theory is taken upon from where it was left off in previous introductory courses. The basic constructions in group theory – those of direct products and quotient groups are introduced. The Fundamental Theorem of Finitely Generated Abelian Groups is introduced (without proof) and the consequences explored in order to compare the challenges in the theory of Abelian vs non-Abelian groups. After an introductory delving into normal and subnormal series of groups, group actions are introduced and Sylow Theory discussed in the context of classifying non-Abelian groups. The course concludes with a basic discussion on polynomial rings and their factorisation, paving the way for the theory of extension fields in later, more advanced courses.					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the concept of direct products of groups and factor groups to construct new groups from existing ones.	Ар	Р	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate the isomorphism theorems, series of groups, and Sylow theorems to understand the structural properties and classifications of groups.	Е	С	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of rings of polynomials, factorization of polynomials, and ideal structures within rings and fields, with a focus on homomorphisms and factor rings.	E	Р	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
# - Fact	nember (R), Understand (U), Appl ual Knowledge(F) Conceptual Kr gnitive Knowledge (M)			

Textbook	A First Course in Abstract Algebra, J. B. Fraleigh, 7 th Edition, Pearson Education Limited, 2014.								
Module	Unit	Content	Hrs (45+30)	External Marks (70)					
Ι	E	Basic Constructions – New Groups From Old							
	1	Section 11 – Direct Products of Groups (11.1 to 11.11)	•						
	2	Section 11 – Finitely Generated Abelian Groups (11.12 to 11.17)		201 40					
	4	Section 14 – Factor Groups	11	Min.15					
	5	Section 15 – Factor Group Computations (15.1 to 15.13)							
	6	Section 15 – Simple Groups, The Centre and Commutator Subgroups (15.14 to 15.21).							
II		Advanced Group Theory							
	(.	Pre-requisites: Sections 16 and 17 of Practicum)							
	7	Section 34 – Isomorphism Theorems							
	8	Section 35 – Series of Groups - 35.1 to 35.19 (Proofs of Zassenhaus Lemma and Schreier Theorem are optional)	•						
	9	Section 36 – Sylow Theorems (36.1 to 36.4)	14	Min.20					
	10	Section 36 – Sylow Theorems (36.5 to 36.13).							
	11	Section 37 – Applications of the Sylow Theory							
		(37.1 to 37.6)							
	12	Section 37 – Further Applications (37.7 to 37.15)							
III		Rings and Fields							
	13	13 Section 22 – Rings of Polynomials – (22.1 to 22.3) (proof of Theorem 22.2 is optional)		Min.15					
	14	Section 22 – The Evaluation Homomorphisms (22.4 to 22.11)							
	15	Section 23 – Factorisation of Polynomials over a Field (23.1 to 23.6)							

	16	Section 23 – Irreducible Polynomials (23.7 to 23.21)					
	17						
	18	Section 24 – Non-commutative Examples					
		(24.4 to 24.10)					
IV		More Ring Theory					
	19	Section 26 – Homomorphism and Factor Rings					
		(26.1 to 26.6).					
	20	Section 26 – Factor Rings (26.7 to 26.19)	8	Min.10			
	21	Section 27 – Prime and Maximal Ideals					
		(27.1 to 27.20).					
	22	Section 27 – Ideal Structure in F[x] (27.21 to 27.27)					
V		Practicum:		-			
	The goal is for the students to learn the following selected topics in 5 practicum sessions of six hours each via self- study and group activities. The lecturer may assist by running group discussions, supervising class seminars and referring library books for self-study and note preparation.						
1	Section	12 – Plane isometries	30				
2	Section	16 – Group Action on a Set	50				
3	Section	17 – Application of G-sets to Counting					
4	Section	21 – The Field of Quotients of an Integral Domain					
		35 - Series of Groups - Ascending central series - to 35.21					
5	Section 39 – Free Groups						
Reference	s			1			
 2. Cor 3. Top 4. Alg 5. Alg 6. Alg 7. Adv 	ntempora pics in A gebra, T. gebra, M gebra, Se vanced H	gebra, Dummitt and Foote, Wiley India, 2011. ary Abstract Algebra, Joseph A. Gallian, CRC Press, 1 lgebra, I. N. Herstein, John Wiley and Sons, 2006. W. Hungerford, Springer-Verlag, 1987. icheal Artin, Birkhauser, 2011 rge Lang, Springer, 2002. Higher Algebra, J G Chakravorthy and P R Gosh, Koll		9hur, 2014			
		89380673059) Programming Exercises for Practicum:					

1. Form congruence groups Z₃, Z₂. Verify that $Z_3 \times Z_2 \cong \mathbb{Z}_6$. Form its 113

cosets (Section 9.11, Ref (3)).

- 2. Find the centre of the dihedral group. (Section 9.12, Ref (3))
- 3. For an element from the dihedral group, find its stabilizer. (Section 9.12, Ref (3))
- Find the conjugacy classes of an element from the dihedral group. (Section 9.12, Ref (3))
- 5. Take a subgroup (say H) of S_3 . List the conjugacy classes using the command conjugacy classes subgroups (). Can you find out all the subgroups using these conjugacy classes? (Ref (1) or Section 9.12, Ref (3))
- 6. Find Sylow-2-subgroups and Sylow-3-subgroups or D_{18} (Section 9.13, Ref (3))

References

1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed. edu/~davidp/332/sage-group-theory.pdf

2. Group Theory and Sage - SageMath tutorial https://doc.sagemath.org/html/ en/thematic_tutorials/group_theory.html

3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.

4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	0	2	0	1
CO 2	2	3	1	2	3	0	3	0	3	0	2
CO 3	2	1	3	3	3	0	3	0	3	0	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT7CJ404							
Course Title	LINEAR ALGEBR	A						
Type of Course	Major							
Semester	VII							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites		ic and necessary exposure	e to set theory.					
	2. Matrices and Deter							
		Equations and their solution						
Course		e abstract are introduce						
Summary		are preserving maps bet		*				
		s as matrices is discussed.	•					
	*	or space are studied in so		*				
	*	transformation is introduc						
		on to spectral theory of						
	e	ristic values and vectors.						
	U	racterisation of diagonalis		· · ·				
	•	position of a linear oper						
	ends with a short disc	cussion of inner products	and inner prod	uct spaces.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and apply the concepts of vector spaces, subspaces, and bases to solve problems involving linear independence and dimensionality.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Evaluate the properties of linear transformations and their algebraic representations using matrices.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of linear functionals, the double dual space, and the transpose of linear transformations to understand advanced topics in linear algebra and apply them to canonical forms	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
	ember (R), Understand (U), Apply ual Knowledge(F) Conceptual Kno dge (M)			

.

Module	Hrs (45+30)	External Marks (70)		
Ι		Vector Spaces		
	1	Section 2.1 – Vector Spaces		
	2	Section 2.2 – Subspaces		
	3	Section 2.3 – Bases and Dimension – up to Theorem 5		Min.15
	4	Section 2.3 – Bases and Dimension – rest of the section starting from Theorem 5	12	
	5	Section 2.4 – Coordinates – up to and including Theorem 7		
	6	Section 2.4 – Coordinates – rest of the section		
II		Linear Transformations		
	7	Section 3.1 – Linear Transformations – upto and including Example 7		
	8	Section 3.1 – Linear Transformations – rest of the section.		Min.15
	9	Section 3.2 – The Algebra of Linear Transformations – up to and including Theorem 5	11	
	10	Section 3.2 – The Algebra of Linear Transformations – rest of the section		
	11	Section 3.3 – Isomorphism	1	
	12	Section 3.4 – Representation of Transformations by Matrices – up to and including Example 15	-	
III		Linear Transformations		
	13	Section 3.4 – Representation of Transformations by Matrices – rest of the section	-	
	14	Section 3.5 – Linear Functionals – upto and including Example 22.	-	Min.15
	15	Section 3.5 – Linear Functionals – rest of the section.	-	
	16	Section 3.6 – The Double Dual – upto and including Theorem 18.	11	
	17	Section 3.6 – The Double Dual – the rest of the section		
	18	Section 3.7 – The Transpose of a Linear Transformation – up to and including Theorem 22		
	19	Section 3.7 – The Transpose of a Linear Transformation – rest of the section.		
IV		Elementary Canonical Forms		
	20	Section 6.1 and 6.2 – Introduction and Characteristic Values		Min.15
	21	Section 6.3 – Annihilating Polynomials (Proof of Theorem 4 omitted)	11	
	22	Section 6.4 – Invariant Subspaces.	1	

			_				
V	Practicum						
	The goal is for the students to learn the following selected						
	topics in 10 practicum sessions of three hours each via						
	self-study and group activities. The lecturer may assist by						
	running group discussions, supervising class seminars and						
	referring library books for self-study and						
	note preparations.						
	1 Section 1.3 – Matrices and Elementary Row Operations	30					
	2 Section 1.4 – Row Reduced Echelon Matrices						
	3 Section 1.5 – Matrix Multiplication						
	4 Section 1.6 – Invertible Matrices						
	5 Section 6.4 – Triangulation and Diagonalisation						
	6 Section 6.6 – Direct-sum Decompositions						
	7 Section 6.7 – Invariant Direct Sums	1					
	8 Section 8.1 – Inner Products	1					
	9 Section 8.2 – Inner Product Spaces						
	10 Section 6.8 – The Primary Decomposition						
	Theorem						
References							
	e Dimensional Vector Spaces, P. R. Halmos, Narosa Pub Hou	se, 1980					
	ur Algebra, S. Lang, Addison Wesley Pub Company, 1972.						
-	cs in Algebra, I. N. Herstein, John Wiley & Sons, 2006.		10.00				
4. Linea	rr Algebra, R. R. Stoll & E. T. Wong, Academic Press Interna	ational Edition	on, 1968.				
Suggested P	rogramming Exercises for Practicuum :						
	a four-dimensional vector space over Q. Take two vectors fr ts span. (Chapter VS, Ref (1))	rom this,					
2. Find Ref (basis of the vector subspace found in the above question. (Cha 1))	pter VS,					
	some elements from this vector space, test for linear independent V Section LI, Ref (1))	endence.					
	two vector spaces over Q. Define symbolic linear transforeen them, find the image of selected elements under it. (Cha 1))						
5. Define linear transformations (LT) from matrices. (Chapter LT, Ref (1))							
6. Chec	6. Check if linear transformation is injective (Section ILT, Ref (1))						
to ce	 Define two LT, add them. Find the individual matrices of these with respect to certain bases. Verify that the matrix of the sum of LT is the sum of matrices of individual LT .(Section OLT, , Ref (1))) 						
	the kernel of an LT, find its nullitty. (Section ILT, Ref (1)) inverse of LT (Section IVLT, Ref (1))						
10. Take	a matrix, find Eigenvalues, Eigen vectors, check if it is						

diagonalizable, diagonalize if it is. (Chapter E ILT, Ref (1))

References

- 1. Robert A. Beezer, Sage for Linear Algebra A Supplement to A First Course in Linear Algebra http://linear.ups.edu/sage-fcla.html
- 2. Sang-Gu Lee *et al.*, Linear Algebra with Sage https://www.researchgate.net/ publication/280093747_Linear_Algebra_with_Sage_BigBook_Free_ebook_English_ Version_All

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	1	3	0	2
CO 2	3	3	2	1	3	0	3	2	3	0	2
CO 3	3	3	2	2	3	0	3	2	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	\checkmark	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics H	Ionours		
Course Code	MAT7CJ405			
Course Title	DISCRETE MATH	EMATICS		
Type of Course	Major			
Semester	VII			
Academic	400-499			
Level				
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours
		per week	per week	
	4	3	2	75
Pre-requisites	Basic Logical thinkin	g and Set theory.		
Course	The "Discrete Mather	natics" course (MAT7CJ4	405) covers es	sential concepts in
Summary	discrete structures an	nd their applications. Stu	dents explore	topics like graph
		ns, connectivity, and or		
		The course includes prac		
		in the field, provid		
		oblem-solving skills nece		her studies or real-
	world applications in	mathematics and related	areas.	

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe and explain fundamental concepts in graph theory, including subgraphs, vertex degrees, paths, connectedness, and operations on graphs.	U	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO2	Apply and analyse concepts related to automorphisms of graphs, vertex and edge cuts, and graph connectivity, utilizing definitions, theorems, and exercises.	An	Р	Internal Exam/ Assignment/ Seminar/ Viva/ Report/ End Sem Exam
CO3	Evaluate and compare order relations in mathematical contexts and their implications for understanding and applying order theory.	Е	С	Internal Exam/ Assignment/ Seminar/ Viva/ Report/ End Sem Exam
# - Fac	member (R), Understand (U), Apply (Ap), An ctual Knowledge(F) Conceptual Knowledge (O ledge (M)	• • •	• •	. ,

Textbook	Spr. 2. For Lim 3. An	Textbook of Graph Theory. (2/e) Balakrishnan, R, & Rangana inger-Verlag, New York Inc., 2020 undations of Discrete Mathematics, K. D Joshi, New Age Inten hited, New Delhi, 1989. Introduction to Formal Languages and Automata (2/e), Peter blishing House, New Delhi, 1997	rnation	al (P)
Module	Unit	Content	Hrs (75)	External Marks (70)
		Fundamentals of Graph Theory		
	1	Section 1.0 Introduction (Text 1)	1	
I	2	Section 1.1 Basic Concepts (Text 1)		
I	3	Section 1.2 Sub Graphs (Text 1)	12	Min.15
	4	Section 1.3 Degrees of Vertices (Text 1)		
	5	Section 1.4 Paths and Connectedness (Text 1)		
		Graph Operations and Connectivity		
	6	Section 1.5 Automorphisms of a simple graph (Definition 1.5.1 to Theorem 1.5.3) (Text 1)		
	7	Section 1.5 Automorphisms of a simple (Exercise 5.1 to Exercise 5.5) (Text 1)	- 11 N	
	8	Section 1.7 Operations on Graphs (Definition 1.7.1 to Example 1.7.10) (Text 1)		Min.15
п	9	Section 1.7 Operations on Graphs (Exercise 7.3 to Exercise 7.6) (Text 1)		
	10	Section 3.1 Vertex Cuts and edge Cuts (Definition 3.1.1 to Theorem 3.1.10) (Text 1)		
	11	Section 3.1 Vertex Cuts and edge Cuts (Proposition 3.1.2 to Exercise 1.4) (Text 1)		
	12	Section 3.2 Connectivity and Edge - Connectivity (Definition 3.2.1 to Exercise 2.10) (Text 1)	_	
	13	Section 3.2 Connectivity and Edge - Connectivity (Theorem 3.2.10 to Theorem 3.2.11) (Text 1)		
	1.4	Order Relations	_	
	<u>14</u> 15	Section 3 Order Relations (Sections 3, 3.1, 3.2 of Text 2) Section 3 Order Relations (Sections 3.3, 3.4 of Text book 2)	m 3.2.11) (Text 1) ions Sections 3, 3.1, 3.2 of Text 2) Sections 3.3, 3.4 of Text book Sections 3.5, 3.6 of Text book 11	Min.15
ш	15 2) 16 See 2)	Section 3 Order Relations (Sections 3.5, 3.6 of Text book	11	
	17	Section 3 Order Relations (Sections 3.7 of Text book 2)	1	
	18	Section 3 Order Relations (Sections 3.8, 3.9, 3.10 of Text 2)	1	
	19	Section 3 Order Relations (Sections 3.11 of Text book 2)]	
		Finite Automata and Acceptors		
	20	Section 2.1 Deterministic Finite Accepters (Text 3)	1	
IV	20	Section 2.2 Non-Deterministic Finite Accepters (Text 3)	11	Min.15
_ ,	22	Section 2.3 Equivalence of Deterministic and Nondeterministic Finite Accepters (Text 3)		
			1	

	Practicum	30	
	Line Graphs and Directed Graphs		
V	Eulerian Graphs and Hamiltonian Graphs		
	Planar and Non planar Graphs		
	Applications of Lattices in Switching Circuits		
	Applications of Automata in Theory of Computing		

References

- 1. J. C. Abbot: Sets, lattices and Boolean Algebras; Allyn and Bacon, Boston; 1969.
- 2. J. A. Bondy, U.S.R. Murty: Graph Theory; Springer; 2000.
- 3. S. M. Cioaba and M.R. Murty: A First Course in Graph Theory and Combinatorics; Hindustan Book Agency; 2009
- 4. R. P. Grimaldi: Discrete and Combinatorial Mathematics- an applied introduction(5th edn.); Pearson; 2007.
- 5. J. L. Gross: Graph theory and its applications(2nd edn.); Chapman & Hall/CRC; 2005
- 6. Graph Theory and Decomposition, Jomon Kottarathil, Sudev Naduvath and Joseph Varghese Kureethara, CRC Press, London, New York, 2024.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	2	0	3	0	2	1	3	0	2
CO 2	1	3	2	1	3	0	3	2	3	0	3
CO 3	0	2	2	1	3	0	3	1	3	0	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

		Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
СС	D 1	~	\checkmark	~	>	\checkmark
С	0 2	√	\checkmark	~	~	\checkmark
СС	03	✓	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathema	atics Honours		
Course Code	MAT8CJ406 / 1	MAT8MN406		
Course Title	BASIC MEAS	URE THEORY		
Type of Course	Major			
Semester	VIII			
Academic	400-499			
Level				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours
		per week	per week	
	4	3	2	75
Pre-requisites	1. Fundamental	Mathematics Concepts: Se	et, Functions, Lo	ogic
	2. Real Analysi	S		
Course	This course fam	niliarises students with the	Lebesgue Meası	ure on the real line
Summary	and how it enab	les the construction of a th	eory of integrati	on that does away
	with many of th	e drawbacks of Riemann in	ntegration.	

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and explain the concepts of Lebesgue measure, including outer measure, measurable sets, and properties such as countable additivity and the Borel-Cantelli Lemma.	U	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO2	Apply theorems related to Lebesgue measurable functions, including Littlewood's Three Principles, Egoroff's, and Lusin's Theorems, to analyse function behaviour and approximations.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO3	Evaluate and integrate functions using the Lebesgue integral, understanding its differences from the Riemann integral and applying it to bounded and non-negative measurable functions.	E	F	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
	* - Remember (R), Understand (U), Ap # - Factual Knowledge(F) Conceptual & Metacognitive Knowledge (M)			

book	2000			
Modul e	Unit	Content	Hrs (45+ 30)	Ext. Marks (70)
Ι		Chapters 0, 1, 2: The Lebesgue Measure		
	1	Preliminaries On Sets, Mappings & Relations (Review only)		
	2	Chapter 1: The Real Numbers: Sets, Sequences & Functions (Proofs of results included in Practicum)		
	3	2.1 Introduction – Measure as a set function		Min.15
	4	2.2 Lebesgue Outer Measure	15	
	5	2.3 The σ -Algebra of Lebesgue Measurable Sets		
	6	2.4 Outer & Inner Approximation of Lebesgue Measurable Sets		
	7	2.5 Countable Additivity, Continuity & the Borel-Cantelli Lemma		
	8	2.6 Non-Measurable Sets		
II		Chapter 3: Lebesgue Measurable Functions		
	10	3.1 Sums, Products & Compositions	8	Min.15
	11	3.2 Sequential Pointwise Limits & Simple Approximation		
	12	3.3 Littlewood's Three Principles, Egoroff's & Lusin's Theorems		
III		Chapter 4: The Lebesgue Integral		
	13	4.1 The Riemann Integral		
	14	4.2 Lebesgue Integral of Bounded Measurable Function Over a Set of Finite Measure.		
	15	4.3 Lebesgue Integral of a Non-negative Measurable Function.		
	16	4.4 The General Lebesgue Integral	12	Min.20
	17	4.5 Countable Additivity & Continuity of Integration (proofs included in practicum)		
	18	4.6 Uniform Integrability: The Vitali Convergence Theorem (proofs included in Practicum)		
IV		Chapter 5: Differentiation & Lebesgue Integration		
	19	6.1 Continuity of Monotone Functions.		
	20	6.2 Differentiability of Monotone Functions: Lebesgue's Theorem	10	Min.1(
	21	6.3 Functions of Bounded Variation: Jordan's Theorem		
	22	6.4 Absolutely Continuous Functions (Proof of Theorem 9 is optional)		
	23	6.5 Integrating Derivatives: Differentiating Indefinite Integrals		
V	23	Practicum:	30	
•	The go	bal is for the students to learn the following selected topics in 10	00	
	practic	cum sessions of three hours each via self-study and group activities. cturer may assist by running group discussions and supervising		
		eminars and referring library books for self-study and		
	note p	reparations.		
	1	Proofs in Chapter 1: The Real Numbers		
	2	Section 2.7 - The Cantor Set & the Cantor-Lebesgue Function		
	3	Proofs in Section 4.5		
	4	Proofs in Section 4.6		

6 5.2: Convergence in Measure
7 5.3: Characterizations of Riemann & Lebesgue Integrability
8 7.1: Normed Linear Spaces
9 7.2: Inequalities
10 7.3: Riesz-Fischer Theorem

References

- 1. R. G. Bartle, Wiley, The Elements of Integration & Lebesgue Measure, 1995.
- 2. G. de Barra, Measure Theory & Integration, New Age International Publications, 1981.
- 3. David M. Bressoud, A Radical Approach to Lebesgue's Theory of Integration (ARALTI), Cambridge University Press, 2008.
- 4. P. R. Halmos, Measure Theory, GTM, Springer-Verlag
- 5. Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, Tata McGraw Hill Inc., 1976.
- 6. Walter Rudin, Real & Complex Analysis, 3rd Edition, McGraw Hill Inc., 1987.

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	0	0	3	0	2	1	3	0	2
CO 2	2	2	0	0	3	0	3	2	3	0	3
CO 3	1	0	3	0	3	0	3	1	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	>	\checkmark
CO 2	~	\checkmark	√	~	✓
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours								
Course Code	MAT8CJ407 / MAT8MN407								
Course Title	NUMBER THEORY								
Type of Course	Major								
Semester	VIII								
Academic	400-499								
Level			1						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week per week							
	4 4 - 60								
Pre-requisites	Basic algebra of	f integers, basic set theory, b	pasic proof tech	nniques.					
Course	This is a more	advanced course than MAT	6CJ305 / MA	T8MN305 Elementary					
Summary	Number Theor	y. Here we focus on ari	thmetical func	tions, their averages,					
		prime numbers, quadratic re							
		graphy. Arithmetical functi							
		and their distribution. We							
		em such as Mobius func							
		through techniques such							
		ext we study their asympto							
	•	mates, partial summation ar	-						
		of prime numbers. The prim							
	-	nt versions and a build-up		A A					
		ratic reciprocity and how							
	applications, are	e studied. The open-ended p	art is Cryptogr	apny.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand and analyse the properties	An	С	Internal
	of arithmetical functions, including the			Exam/Assignment
	Möbius function, Euler totient function,			/Seminar/ Viva /
	and their relationships and products.			End Sem Exam
CO2	Apply Dirichlet multiplication and	Ар	Р	Internal
	inversion formulas to solve problems			Exam/Assignment
	involving arithmetical functions,			/Seminar/ Viva/
	including the Mangoldt function and			End Sem Exam
	Liouville's function.			
CO3	Evaluate and create asymptotic formulas	С	F	Internal
	and theorems related to the distribution			Exam/Assignment
	of prime numbers and quadratic			/Seminar/ Viva/
	residues, utilizing tools such as			End Sem Exam
	Chebyshev's functions and the quadratic			
	reciprocity law.			
* - Remen	ber (R), Understand (U), Apply (Ap), Anal	lyse (An), Ev	aluate (E), Cre	ate (C)
# - Factual	Knowledge(F) Conceptual Knowledge (C)) Procedural F	Knowledge (P)	Metacognitive
Knowledg	e (M)			

.

•

Textbook		Introduction to Analytic Number Theory, Tom M. Apo International Student Edition ,Narosa Publishing Hous A course in Number Theory and Cryptography, second Koblitz Springer, 1991	se, New	Delhi, 1990
Module	Unit	Content	Hrs	Marks
Wibuute			(48+ 12)	Ext: 70
		Arithmetical Functions and their properties		
		Arithmetical Functions and Dirichlet Multiplication		
	1	Section 2.1-Introduction		
	2	Section 2.2- The Mobius function $\mu(n)$		
	3	Section 2.3- The Euler totient function $\phi(n)$		
Ι	4	Section 2.4- A relation connecting μ and ϕ		
	5	Section 2.5- A product formula for $\phi(n)$		
	6	Section 2.6- The Dirichlet product of arithmetical functions		
	7	Section 2.7- Dirichlet inverses and Mobius inversion formula	18	Min.15
	8	Section 2.8- The Mangoldt function $\Lambda(n)$		
	9	Section 2.9- Multiplicative functions		
	10	Section 2.10- Multiplicative functions and Dirichlet Multiplication		
	11	Section 2.11- Inverse of a completely multiplicative function		
	12	Section 2.12- Liouville's function $\lambda(n)$		
	13	Section 2.13- The divisor functions $\sigma_{\alpha}(n)$		
	14	Section 2.14- Generalized Convolutions		
		Averages of Arithmetical Functions		
	15	Section 3.1- Introduction		
	16	Section 3.2The big oh notation. Asymptotic equality		
II		of functions		
	17	Section 3.3- Euler's Summation formula	10	Min.15
	18	Section 3.4- Some elementary asymptotic formulas	10	IVIIII.13
	19	Section 3.10- The Partial sums of a Dirichlet product		
	20	Section 3.11- Applications of $\mu(n)$ and $\Lambda(n)$		
	21	Section 3.12- Another identity for the partial sums of a		
		Dirichlet product		
	Some	e Elementary Theorems on the Distribution of Prime Numbers		
	22	Section 4.1- Introduction		
III	23	Section 4.2- Chebyshev's functions $\psi(x)$ and $\vartheta(x)$	10	Min.15
111	24	Section 4.3- Relations connecting $\vartheta(x)$ and $\pi(x)$ Section 4.4- Some equivalent forms of the prime	10	171111.13
	25			
	26	number theorem Section 4.5- Inequalities for $\pi(n)$ and p_n		
	_	dratic Residues and the Quadratic Reciprocity Law		
	27	Section 9.1- Quadratic residues		
IV	28	Section 9.1- Quadratic residues	10	Min.15
	28	Section 9.2- Ecgendre's symbol and its properties Section 9.3- Evaluation of (-1 p) and (2 p)		

	30	Section 9.4- Gauss' lemma						
	31	Section 9.5- The quadratic reciprocity law						
	32	Section 9.6- Applications of the reciprocity law						
		Open Ended: Cryptography						
		Chapter III						
	•	1: Some simple cryptosystems -3 hrs						
V	•	2: Enciphering Matrices-4hrs	12					
		Chapter IV						
	•	1: The idea of public key cryptography -3 hrs						
	•	2: RSA-2 hrs						
References								
1. A. I	Beautel s	pacher: Cryptology; Mathematical Association of America	a (Incorp	orated); 1994				
		rt: The higher arithmetic(6th Edn.); Cambridge Univ.Press						
		and E.M. Wright: Introduction to the theory of numbers; O	Oxford 1	International				
	1985							
		& N. Kritiko: Lectures on Number Theory; Springer Verlag						
		ementary Number Theory with Applications; Harcourt / A						
		: Number Theory; Monographs & Texts in Mathematics N	lo: 220;	Mar cel				
	ker Inc.;							
		m: The little book of Big Primes; Springer-Verlag, New Y						
		Elementary Number Theory and its applications(3rd Edn.	.); Addis	on				
	•	Co.; 1993						
	9. W. Stallings: Cryptography and Network Security-Principles and Practices; PHI; 2004							
	10. D.R. Stinson: Cryptography- Theory and Practice(2nd Edn.); Chapman & Hall / CRC (214.							
	Simon Sing: The Code Book The Fourth Estate London); 1999							
	. .	A Primer of Analytic Number Theory-From Pythagoras to 2003	Kiemani	n; Cambridge				
Univ Press; 2003 12. S.Y. Yan: Number Theory for Computing(2nd Edn.); Springer-Verlag; 2002								

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	1	1	3	0	3	1	3	0	2
CO 2	2	3	2	1	3	0	3	2	3	0	3
CO 3	3	2	3	2	3	0	3	1	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathema	atics Honours							
Course Code	MAT8CJ408 / MAT8MN408								
Course Title	DIFFERENTI	DIFFERENTIAL EQUATIONS							
Type of Course	Major	Major							
Semester	VIII	VIII							
Academic	400-499								
Level									
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic knowledg	ge of calculus of one variabl	e and an introd	uctory course in Real					
	Analysis								
Course	The course enha	ances the skill to solve ordina	ary differential	equation using specific					
Summary		ically and computationally		6					
		st of the fundamental pher							
		differential equation. Stud		w how to model any					
	physical phenor	mena using differential equa	ations.						

СО	CO Statement	Cognitive Level*	Knowledg e	Evaluation Tools used
			Category#	
CO1	Understand and apply the existence and uniqueness theorems for second-order differential equations, including methods such as the method of successive approximations and Picard's theorem.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Analyse and solve second-order differential equations using power series methods, including ordinary points, regular singular points, and specific functions such as Gauss's Hypergeometric Equation and Legendre Polynomials.	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Evaluate and determine the stability of autonomous systems and critical points for linear and nonlinear systems using the phase plane analysis and Lyapunov's direct method.	E	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
* - Remen	nber (R), Understand (U), Apply (Ap), Anal	lyse (An), Ev	aluate (E), Cr	reate (C)
# - Factual	Knowledge(F) Conceptual Knowledge (C)	Procedural H	Knowledge (P) Metacognitive
Knowledg	e (M)			

•

Text Book	Differential Equations With Applications And Historical Notes, Third Edition, George F. Simmons.							
Module	Unit	Unit Content						
			(48+ 12)	Ext: 70				
		Second Order Differential Equations						
		Existence and Uniqueness of Solutions and Power						
		Series method of solving differential equations	_					
	1	69 Method of Successive Approximations	_					
_	2	70 Picard's theorem, theorems A& B (proofs are						
Ι		optional).	12	Min.15				
	3	71 Systems. The Second Order Equations	4					
	4	26 Introduction. A review of Power Series	-					
	5	27 Series solutions of first order equations	-					
	6	28 Second order Equations. Ordinary points	-					
	7	29 Regular singular points						
		Power Series Solutions and Special Functions	-					
	8	30 Regular Singular Points continued	-					
		9 31 Gauss's Hypergeometric Equation						
П	10	31 Gauss's Hypergeometric Equation Reduction to	11	Min.15				
	11	Hypergeometric equation	-					
	11	32 The Point at Infinity	-					
	12	44 Legendre Polynomials (proofs of Rodrigues'						
		formula is optional)						
	10	Special Functions (Contd.)	-					
	13	45 Properties of Legendre Polynomials	-					
	14	46 Bessel functions.	10					
III	15	46 Bessel functions. The Gamma function	12	Min.15				
	16	47 Properties of Bessel functions	-					
	17	47 Properties of Bessel functions						
		Zeros and Bessel series. Bessel expansions						
	Auto	nomous Systems. Stability of Linear and Nonlinear						
	10	Systems	-					
	18	58 Autonomous systems. The phase plane and its						
IV	10	phenomena	13	Min.15				
	19	59 Types of critical points	-					
	20	59 Types of critical points. Stability	-					
	21	60 Critical points and stability for linear system	-					
	22	61 Stability by lyapunov direct method						
		Open Ended	_					
X 7	•	Proof of Picard's theorem						
V	•	Proof of theorem B of Unit I	12					
	•	Proof of Rodrigues' formula for Legendre						
		polynomials						
	•	Analyse solutions of Differential Equations using						
		softwares like Python						

References

- 1. G. Birkhoff and G.C. Rota: Ordinary Differential Equations (3rd Edn.); Edn. Wiley & Sons; 1978
- 2. W.E. Boyce and R.C. Diprima: Elementary Differential Equations and boundary value problems (2nd Edn.); John Wiley & Sons, NY; 1969
- 3. A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd., New Delhi; 1990
- 4. E.A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall of India, New Delhi; 1974
- 5. A. K. Nandakumaran, P. S. Datti, Raju K. George: Ordinary Differential Equations: Principles and Applications, Cambridge University Press

*Optional topics are exempted for end semester examination.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	3	0	3	1	3	0	2
CO 2	2	2	1	0	3	0	3	2	3	0	3
CO 3	1	2	2	2	3	0	3	1	3	0	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	✓	~	~	\checkmark
CO 2	~	√	✓	~	~
CO 3	~	\checkmark	~	~	\checkmark

ELECTIVE COURSES

Programme	B. Sc. Mathe	B. Sc. Mathematics Honours						
Course Code	MAT5EJ301	MAT5EJ301(1)						
Course Title	MATHEMA	MATHEMATICAL FOUNDATIONS OF COMPUTING						
Type of Course	Elective (Spe	Elective (Specialisation- Mathematical Computing)						
Semester	V	V						
Academic Level	300 - 399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Fundamental	Fundamental Mathematics Concepts: Set, Functions, Logic						
Course Summary		This course familiarises students with a selection of topics from discrete mathematics which find regular applications in Computer Science.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Apply mathematical induction to solve a variety of combinatorial problems.	Ap	Р	Internal Exam/Assignment				
				/Seminar/ Viva / End Sem Exam				
CO2	Analyse and classify different types of relations and equivalences in combinatorial settings.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
CO3	Evaluate and demonstrate proficiency in using combinatorial techniques such as permutations, factorials, and binomial coefficients to solve complex problems.	Ε	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam				
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive 							
Knowledg	e (M)							

Text Book	Oxfor	 (I) Jiří Matoušek and Jaroslav Nešetřil, Invitation to Discrete Mathematics, (2/e) Oxford University Press (II) Robin J Wilson, Introduction to Graph Theory (4/e), Prentice Hall 								
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)						
Ι		12								
	1	1.1 An Assortment of problems		-						
	2	1.3 Mathematical Induction (Proof of Theorem 1.3.1 is optional)	-							
	3	1.5 Relations, 1.6 Equivalences and other special type of relation	-							
	4	3.1 Functions and subsets, 3.2 Permutations and factorials								
	5	3.3 Binomial Coefficients-	_							
	6	3.7 Inclusion-Exclusion Principle. (Third proof of Theorem 3.7.2 is								
		optional)		_						
II		Basics of Graph Theory (Text 1)	12							
	7	4.1 The notion of a graph; Isomorphism								
	8	4.2 Subgraphs, Components, Adjacency Matrix								
	9	4.3 Graph Score (Proof of Theorem 4.3.3 is optional)	_							
	10	4.4 Eulerian Graphs (Second proof of Theorem 4.4.1 and lemma 4.4.2 are optional)								
	11	4.5 Eulerian Directed Graph	_							
	12	5.1 Definition and characterizations of trees	_							
III		Matching and Colouring (Text 2)	12	-						
	13	12. Planar Graphs (Proof of Theorem 12.2 and Theorem 12.3 are								
		optional)								
	14	13. Euler's formula (up to Corollary 13.4)	1							
	15	13. Euler's formula (from Corollary 13.4)								
	16	17. Coloring Graphs	1							

	17	 19. Coloring Maps (Proof of Theorem 19.2 and Theorem 19.4 are optional) 25 Hall's Marriage theorem 	_						
IV		Probabilistic Method (Text 1)	12						
	19	10.1 Proofs by Counting (2-Coloting revisited and related topics are optional)							
	20	10.2 Finite Probability Spaces (up to Random graphs)							
	22	10.2 Finite Probability Spaces (From Random graphs)							
	22	10.3 Random Variables and their Expectations							
V		Open Ended	12						
Hamiltonian Graphs, 2-Connectivity, Examples of applications of Probabilistic Method, Ramsey Theory, Generating Functions, simulating random experiments in python and calculating expectations. Brook's Theorem.									
Reference	s:								

Note: 1) Optional topics are exempted for end semester examination

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	1	3	1	3	1	3	0	2
CO 2	2	2	1	1	3	1	3	2	3	0	2
CO 3	2	3	2	2	3	1	3	2	3	0	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	√	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT5EJ302(1)						
Course Title	DATA STRUC	DATA STRUCTURES AND ALGORITHMS					
Type of Course	Elective (Specialisation- Mathematical Computing)						
Semester	V	V					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	1. Fundamental Mathematics Concepts: Sets, Functions 2. Discrete Mathematics						
Course Summary	This course familiarises students with computational problems and computational thinking using some of the basic algorithmic strategies.						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools		
		Level*	Category#	used		
CO1	Analyse and compare the efficiency of	Е	Р	Internal		
	algorithms for computing Fibonacci			Exam/Assignment/		
	numbers, distinguishing between			Seminar/ Viva /		
	exponential and polynomial approaches.			End Sem Exam		
CO2	Demonstrate proficiency in asymptotic	Ap	Р	Internal		
	analysis to assess the efficiency of			Exam/Assignment/		
	algorithms.			Seminar/ Viva /		
				End Sem Exam		
CO3	Apply classical algorithms for number	Ap	Р	Internal		
	operations, including addition,			Exam/Assignment/		
	multiplication, and modular arithmetic,			Seminar/ Viva /		
	to solve computational problems			End Sem Exam		
	efficiently.					
* - Remember	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)					
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Knowledge (M)						

Text Book		Algorithms by Sanjoy Dasgupta, Christos H. Papadimitriou, Un McGraw- Hill Education, 2006. ISBN: 978-0073523408.		rani.
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι	Introduction			
	1	Computing Fibonacci Numbers: Exponential and Polynomial Algorithms		
	2	Efficiency of Algorithms: Asymptotic Analysis, Big-O Notation	-	
	3	Algorithms with Numbers: Efficiency of classical Addition and Multiplication algorithms		
	4	Algorithms for Modular Arithmetic	-	
	5	Euclid's Algorithm for GCD	1	
	6	Primality Testing	-	
	Sectio	ns from Text: 0.2, 0.3, 1.1, 1.2, 1.3		
II	Divide and Conquer Algorithms and Graph Search		12	
	7	Fast Integer Multiplication		
	8	Recursive Relations	-	
	9	Binary Search	-	
	10	Merge Sort		
	11	Graph Representations: Adjacency Matrix, Adjacency List	-	
	12	Depth First Search Undirected Graphs	-	
	13	Depth First Search in Directed Graphs		
	Sections from Text: 2.1, 2.2. 2.3, 3.1-3.3.			
III	Graph Algorithms		12	
	14	Checking connectivity		
	15	Directed Acyclic Graphs, Strongly Connected Components		
	16	Breadth First Search and Computation of distances.		
	17	Weighted Graphs and Dijkstra's Algorithm		
	18	Priority queue implementations		
	19	Shortest Paths in Directed Acyclic Graphs		

	Secti	ons from Text: 3.4, 4.1 to 4.4, 4.5, 4.7	
IV		Greedy & Dynamic Programming Algorithms	12
	20	Minimum Spanning Trees: Cut Property	
	21	Kruskal's Algorithm	-
	22	Data structure for disjoint sets.	
	23	Prim's algorithm	
	24	Dynamic Programming and Shortest Path in Directed Acyclic Graphs (DAG)	
	25	All pairs of Shortest Paths and Floyd Warshall Algorithm	-
	Secti	ons from Text: 5.1, 5.4, 6.1, 6.6.	
V		Advanced Topics (Practical)	12
(Open Ended)	27	 Implement the following algorithms in Python Fibonacci Numbers (exponential and polynomial) Euclid's algorithm (extended version) Primality Testing Depth First Search (and checking connectivity) Breadth First Search (and calculating distances) 	

References:

- 1. The Design and Analysis of Algorithms by Dexter C Kozen. Texts and Monographs in Computer Science, Springer, 1992. ISBN:0-387-97687-6.
- 2. Introduction to Algorithms (3rd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein. PHI Learning, 2009. ISBN:978-81-203-4007-7.
- 3. Algorithm Design by Jon Kleinberg and Eva Tardos. Pearson, 2015. ISBN:978-93-325-1864.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with	PSOs and POs :
---------------------	----------------

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2			3	1	3	3	3	0	3
CO 2	2	3	2	2			3	1	3	3	3	0	2
CO 3	2	3	3	2			3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation					
-	Nil					
1	Slightly / Low					
2	Moderate / Medium					
3	Substantial / High					

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mather	B. Sc. Mathematics Honours							
Course Code	MAT6EJ301(1)								
Course Title	NUMERICA	NUMERICAL ANALYSIS							
Type of	Elective (Spe	Elective (Specialisation- Mathematical Computing)							
Course									
Semester	VI								
Academic	300-399	300- 399							
Level									
Course	Credit	Lecture/Tutorial	Practical	Total Hours					
Details		per week	per week						
	4	4	-	60					
Pre-requisites	1. Real analys	sis							
	2. Linear alge	bra							
	3. Basics of P	ython Programming							
Course	This course fa	miliarises students with th	e fundamental num	erical analysis. Moreover,					
Summary	the course fac	ilitates students to apply re	esults from real ana	lysis and linear algebra to					
	perform quant	titative analysis of numerio	cal solutions.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and apply the Bisection Method, Iteration Method, Newton- Raphson Method, and Secant Method to solve algebraic and transcendental equations numerically.	Ар	P	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Implement interpolation methods such as Newton's formulae, Lagrange's interpolation formula, and divided differences to approximate functions from discrete data.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Implement numerical methods such as Euler's method, Modified Euler's Method, Runge-Kutta method, and Adams-Moulton Method to solve ordinary differential equations (ODEs).	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
	nber (R), Understand (U), Apply (Ap), Ana Il Knowledge(F) Conceptual Knowledge (C			

Text Bo	ook	 [1]. S. S. Sastry, Introductory Methods of Numerical Analysis (5/e), PHI Learning (2012) [2]. Dimitrios Mitsotakis: Computational Mathematics: An Introduction to Numerical Analysis and Scientific Computing with Python, CRC Press (2023), ISBN 978-1-032-26240-6. [3]. Jupyter Notebooks of [2] available at: https://github.com/dmitsot/computational_mathematics 					
Module	odule Uni Content t						
Ι	Nun	nerical Solutions of Algebraic and Transcendental equations (Text 1)	12				
	1	2.1 Introduction					
	2	2.2 Bisection Method					
	3	2.4 Iteration Method (Derivation of Condition for Convergence and Acceleration of Convergence are optional)					
	4	2.5 Newton- Raphson Method (Generalized Newton's Method is optional)					
	5	2.7 Secant Method					
II		Interpolation (Text 1)	12				
	6	3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences					
	7	3.6 Newton's formulae for interpolation (up to and including Example 3.5)					
,	8	3.6 Newton's formulae for interpolation (From Example 3.6)	-				
,	9	3.9.1 Langrange's interpolation formula	-				
	10	3.10 Divided differences and their properties	-				
III	11	3.10.1 Newton's General interpolation formula	12				
111	12	Numerical Differentiation and Integration (Text 1)6.1 Introduction, 6.2 Numerical Differentiation (6.2.1, 6.2.2 and 6.2.3 are optional)	12				
	13	6.4.1 Trapezoidal Rule					
	14	6.4.2 Simpson's 1/3-Rule					
	15	6.4.3 Simpson's 3/8 Rule					
	16	6.10 Numerical Double Integration					
IV		Numerical Solutions of Ordinary Differential Equation (Text 1)	12				
	17	8.1 Introduction					
	18 8.2 Solution by Taylor's series,		-				
	19	8.4 Euler's method (8.4.1 is optional)					
i t		8.4.2 Modified Euler's Method					
	20						
	20 21 22	8.5 Runge-Kutta method 8.6.1 Adams-Moulton Method	•				

1	Jupyter Lab and Notebooks. Google Colab. Instructions in [6] and
	[7]. Quick review of Python Programming. Ch 1 Notebook from [3].
2	Continue Quick Review of Python. Notebook [9]. Numpy and Scipy
	review from [7]. Ch 2 Notebook from [3].
3	Bisection Method. Algorithm and Program.
	Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2].
	Optional: Program to compute speed of convergence.
	Optional: False Position variant from [12].
4	Fixed Point Method (Iteration Method). Algorithm and Program.
	Notebook: Ch 5 of [3]. Reference: 5.2 of [2].
5	Newton-Raphson Method. Algorithm and Program.
	Notebook: Ch 5 of [3]. Reference: 5.3 of [2].
6	Secant Method. Algorithm and Program.
	Notebook: Ch 5 of [3]. Reference: 5.4 of [2].
7	Fast computation using SciPy.Optimize.
	Notebook: Ch 5 of [3]. Reference: 5.6 of [2].
8.	Lagrange Interpolation.
	Notebook: Ch 6 of [3]. Reference: 6.1 of [2].
9	Newton's method for Interpolation using Divided Differences.
	Notebook: Ch 6 of [3]. Reference: 6.2 of [2].
10	Using SciPy.Interpolate Module. Lagrange Interpolation Only.
	Notebook: Ch 6 of [3]. Reference: 6.6 of [2].
11	Numerical Differentiation. Forward and Backward Differences. First
	Order and Second Order Derivative Approximations.
	Notebook: Ch 8 of [3]. Reference: 8.1 of [2].
12	Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule.
	Composite Simpson's Rule.
	Notebook: Ch 7 of [3]. Reference: 7.1. of [2].
13	The Module scipy.integrate.
	Trapezoidal, Simpson.
	Reference: 7.4 of [2]. Notebook: Ch 7 of [3].
14	Euler's Method. Improved Euler's Method. Reference: 8.2 of [2].
	Notebook: Ch 8 of [3].

1. F.B. Hildebrand: Introduction to Numerical Analysis, TMH.

2. J.B. Scarborough: Numerical Mathematical Analysis, Oxford and IBH

3. Joakim Sundnes, Introduction to Scientific Programming with Python. Springer (2020). ISBN 978-3-030-50355-0. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-030-50356-7</u>

4. Sven Linge and Hans Petter Langtagen, Programming for Computations -- Python. A Gentle Introduction to Numerical Simulations With Python. Springer (2018). ISBN 978-3-319-81282-3. Open Access at: <u>https://link.springer.com/book/10.1007/978-3-319-32428-9</u>

Note: 1) Optional topics are exempted for end semester examination.

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

3) Module V is algorithms and lab computations. Algorithms for each numerical method can be taught along with the Python code in lab sessions. The second text [2] stresses computation from the beginning and is a lab reference. The Jupyter Notebooks [3] intended for live lab lessons.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	3	3	0	2
CO 2	2	3	3	2	3	1	3	3	3	0	2
CO 3	3	3	3	2	3	1	3	3	3	0	2

Mapping of COs with PSOs and POs:

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	√	~	~	✓
CO 3	\checkmark	\checkmark	✓	~	✓

Programme	B. Sc. Mathema	atics Honours					
Course Code	MAT6EJ302(1)						
Course Title	MATHEMATICS FOR DIGITAL IMAGES						
Type of Course	Elective (Speci	alisation- Mathematical C	omputing)				
Semester	VI						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4 4 - 60						
Pre-requisites	Basic Geometry	and Algebraic Structures					
Course		s paper is mathematics unde					
Summary		luce patterns automatically					
		user. We begin with isometr		*			
		distance and hence shape.					
		ns or translation, and the ir					
		for combining isometries, a					
		lar. We also apply this to cl					
	*	even types. Our next focu	•	netries; that is, those			
		h send a pattern onto itself,					
	0 0	er with the same size and s					
	•	metries in two non-paralle		*			
		shaped cells, falling into					
		17 pattern types, each	with its own	set of interacting			
	symmetry operation	ations.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Describe the concept of isometries in geometry, including translation, rotation, and reflection, and understand their properties and how they preserve distances.	U	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Demonstrate the ability to compose isometries, understand their combined effects, and analyse the outcomes of sequential transformations.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Investigate the classification of plane patterns, including different net types such as parallelogram nets, rectangular nets, centred rectangular nets, square nets, and hexagonal nets, and analyse examples of the 17 plane pattern types.	An	F	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
	nber (R), Understand (U), Apply (Ap), Ana l Knowledge(F) Conceptual Knowledge (C	• • •	. ,	
Knowledg	ge (M)			

Text Book		HEMATICS FOR DIGITAL IMAGES : Creation, Compressignition. S G Hoggar- Cambridge University Press.	ion, ixestoi	ration,	
Module	odule Unit Content				
I		Introduction	12		
	1	Isometries and their sense			
	2	The plane and vectors			
	3	Isometries – Translation, Rotation, Reflection			
	4	The sense of an isometry	-		
	5	The Classification of isometries			
	6	Composing isometries			
	Sectio	ns from Text (i): Chapter 1 – 1.1, 1.2, 1.3			
II		How Isometries Combine	12		
	7	Reflections are the key			
	8	Some useful compositions			
	9	The Image of a line of symmetry			
	10	The dihedral group			
	11	Appendix on groups			
	Sectio	ns from Text (i):Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5			
III		The Seven Braid Patterns, Plane Patterns & Symmetries	12		
	12	Classification of braids			
	13	Constructing braid patterns			
	14	Translations and nets			
	15	Cells			
	16	The five net types			
	17	Nets allowing a reflection			
	Sectio	ns from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3			
IV		The 17 Plane Patterns	12		
	18	Preliminaries			
	19	The general parallelogram net			
	20	The rectangular net			
	21	The centred rectangular net			
	22	The square net			
	23	The hexagonal net			
	24	Examples of the 17 plane pattern types			
	25	Scheme for identifying pattern types			
	Sectio	ns from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8			
V (Open		12			
Ended)	26	Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB			
	27	Arithmetic operations in matrix data & Reading an Image File by Using MATLAB			

- 1. Baldock R and Graham J (2000) Image Processing and analysis, a practical approach, Oxford University Press
- 2. Gonzalez R C and Woods R E (1993) Digital Image Processing, Addison-Wesley

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	2	2	3	0	2
CO 2	2	3	2	1	2	1	2	2	2	0	2
CO 3	3	3	2	1	3	1	3	3	3	0	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viv		End Semester Examinations
CO 1	~	✓	~	~	~
CO 2	~	√	~	~	✓
CO 3	✓	√	√	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours						
Course Code	MAT5EJ303 (2	MAT5EJ303 (2)						
Course Title	CONVEX OP	CONVEX OPTIMIZATION						
Type of Course	Elective (Speci	Elective (Specialisation- Data Science)						
Semester	V							
Academic Level	300 - 399							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Linear Algebra	and Multi Variable Calcu	lus					
Course Summary	theory of conve this course are and methods in instance, under functions, whil efficient algorit	Linear Algebra and Multi Variable CalculusThe course covers the basic theory of convex sets and functions, optimization theory of convex functions and Lagrangian duality. The concepts explored in this course are important for data science, as they underpin many algorithms and methods in machine learning, optimization, and statistical analysis. For instance, understanding gradients and Hessians is essential for optimizing cost functions, while knowledge of convex optimization is vital for developing efficient algorithms. This mathematical foundation will enable data scientists to design, analyse, and implement sophisticated models and solutions.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Prove the basic properties of convex sets and functions.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Model simple problems using convex optimization methods and solve them.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Formulate the dual of a convex optimization problem and describe the properties.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	ber (R), Understand (U), Apply (Ap), Anal Knowledge(F) Conceptual Knowledge (C) e (M)	• • •	. ,	. ,

Text Book		1. K. G. Binmore, Mathematical Analysis: A straightfo 2nd edition, Cambridge University Press, 1982.	rward appro	oach,
		2. Stephen Boyd, and Lieven Vandenberghe. Convex op Cambridge university press, 2004.	timization.	
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Review of Multivariable Calculus	10	
	1	Scalar and vector fields - Directional and Partial Derivatives		
	2	Differentiable functions and total Derivative - Matrix representation - Gradient and Jacobian		
	3	Chain rule for differentiation - matrix form		
	4	Stationary points - conditional for stationarity		
	5	Second derivatives and Hessian Matrix.		Min 15
	6	Mean value theorems, second order Taylor's theorem		
	7	Eigenvalues of Hessian		
	8	Classification of stationary points.		
	Chap	ter 19 of Text Book 1 - pages 190-231.		
II		Convexity	14	
	9	Affine and Convex Sets		
	10	Convexity preserving operations		
	11	Generalized inequalities	_	
	12	Supporting and separating hyperplanes		
	13	Dual cones and generalized inequality		Min 15
	14	Basic properties and examples of convex functions		
	15	Convexity preserving operations		
	16	Quasi convex, log convex functions		
	17	Convexity and generalized inequalities		
	Ch	apter 2 and 3 of Text Book 2.		
III		Convex Optimization Problems	12	
	18	Optimization problems and convex optimization	``	

	19	Linear optimization problems		
			_	
	20	Quadratic optimization problems		Min 15
	21	1		
	22	Generalized inequality constraints	1	
	19	Vector optimization	1	
	Chap	ter 4 of Text Book 2	1	
IV		Duality	12	-
	20	The Lagrange dual function		-
	21	The Lagrangian dual and geometric interpretation	1	
	22	Saddle point interpretation	1	
	23	Optimality condition	1	Min 15
	24	Theorems of alternatives	-	
	25	Generalized inequalities	1	
	Chap	ter 5 of Text Book 2	_	
V		Open Ended	12	
(Open Ended)	27	Instances of practical problems that can be solved with convex optimization methods discussed in the course such as linear classifiers, support vector machines, linear and logistic regression.		
Reference	es:			
Sp 2.	oringer Niels	G. Luenberger and Yinyu Ye. Linear and nonlinear programming. , 2015. Lauritzen, Undergraduate Convexity: From Fourier And Motzkin T World Scientific, 2013.		d

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	0	2	3	2	3	2	3	1	2
CO 2	2	3	1	2	3	2	3	3	3	1	3
CO 3	2	2	0	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
2-3	1N2il
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT6EJ303 (2)						
Course Title	MACHINE LI	MACHINE LEARNING - I					
Type of Course	Elective (Speci	Elective (Specialisation- Data Science)					
Semester	V	V					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Linear Algebra	I					
Course Summary	The course develops the basic theory of linear discriminative and generative lear models and techniques for linear regression and classification. Understanding classical methods and modern neural network approaches will prepare stude tackle a wide range of data science challenges.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Describe various regression and classification methods and apply them for simple problems.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Apply methods of Bayesian inference to learning problems and analyse the solutions	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Describe the functioning of feedforward neural network models of learning.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
# - Factual k	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

Text B	ook	Pattern Recognition and Machine Learning - Christopher M. -2006	Bishop - S	pringer
Module	odule Unit Content		Hrs (48+12)	Ext. Marks (70)
Ι		Introduction to Statistical Learning	12	
	1	Review of probability theory, density and distribution functions		
	2	expectation and covariance, Bayesian probabilities.	-	
	3	Gaussian distribution: conditional and marginal distributions	1	
	4	Maximum Likelihood and Bayesian inference for Gaussian	1	Min 15
	5	Decision Theory - inference and decision, loss functions	-	
	6	Entropy, relative entropy and mutual information	-	
	Chap	ter 1 and Section 3 of Chapter 2 from text book.	-	
II		Linear Regression	12	
	7	Maximum likelihood and least squares		
	8	Regularized least squares	1	
	9	Bias-Variance Decomposition	1	
	10	Bayesian Linear Regression	-	
	11	Parameter and Predictive Distributions	1	Min 1
	12	Bayesian model comparison		
	Chap	ter 3 of text book	-	
III		Linear Classification	12	
	13	Discriminant functions		
	14	Least squares, Fischer discriminant and the relation between them.	-	
	15	The perceptron algorithm	1	
	16	Maximum likelihood classifier	1	
	17	Probabilistic generative models and Logistic Regression	-	Min 15
	18	Bayesian logistic regression	-	
	Chap	ter 4 of text book		ĺ

IV		Neural Networks	12	
	19	Feed forward neural networks		
	20	Network training and gradient descent optimization		
	21	Analysis of error backpropagation		
	22	Hessian matrix and diagonal approximation	-	
	23	Regularization in neural networks.	-	Min 15
	Chap	oter 5 of text book	-	
V	Open Ended			-
		Model Selection and Validation		-
		Non-Uniform Learnability		
		The Run Time of Learning		
Reference 1)Unders		g Machine Learning From Theory to Algorithms - Shai Shalev Shwa	rtz, Shai B	en David

- Cambridge University Press - ISBN 978-1-107-05713-5 - 2014

2) Foundations of Machine Learning - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar - The MIT Press - 2012

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	2	3	3	3	1	3
CO 2	3	3	2	2	3	2	3	3	3	1	3
CO 3	3	2	2	2	3	2	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT6EJ303 (2)	MAT6EJ303 (2)					
Course Title	APPLIED PRO	APPLIED PROBABILITY					
Type of Course	Elective (Speci	Elective (Specialisation- Data Science)					
Semester	VI	VI					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Basic Algebra an	d Calculus					
Course Summary	This course serves as an introduction to the fundamental principles and concept probability theory. Understanding probability distributions, expectations, and Mar chains is essential for modelling data, making predictions, and analysing comp systems in data science applications.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand basic concepts in probability theory, including discrete and continuous probability distributions, joint distributions for multiple random variables, and Markov chains.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply probability distributions to practical scenarios and compute key measures such as expected value and variance, with an emphasis on their significance in decision-making and risk assessment.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Explore and understand fundamental limit theorems, such as the law of large numbers and the central limit theorem, and their implications for probability theory and statistical inference.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	ber (R), Understand (U), Apply (Ap), Analy Knowledge(F) Conceptual Knowledge (C) e (M)	. ,	. ,	. ,

Text B	ook	k Introduction to Probability Models - Sheldon M Ross -10 th (e)- Acad				
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)		
Ι			12			
	1	Sample space and events.				
	2	Probabilities defined on events.	-			
	3	Conditional Probabilities	-			
	4	Independent Events.	-			
	5	Bayes 'Formula.	-	Min 15		
	6	Random Variables.	-			
	7	Discrete Random Variables.	-			
	8	Continuous Random Variables	-			
	-	er 1: Sections 1.2, 1.3, 1.4, 1.5, 1.6 er 2: Sections 2.1, 2.2, 2.3	-			
II			12			
	9	Expectation of a Random Variable – Discrete Case and Continuous Case				
	10	Jointly distributed Random Variables.	-			
	11	Moment generating functions.	-	Min 1		
	12	Limit Theorems	-			
	Chapte	er 2: sections 2.4, 2.5, 2.6, 2.8				
III			12			
	13	Conditional probability and conditional expectation- The discrete case.				
	14	Conditional probability and conditional expectation- The continuous case.				
	15	Computing expectations by conditioning.	1	Min 15		
	16	Computing Probabilities by conditioning.	1			
	Chapte					
IV			12	•		
	19	Markov chain – definition and examples.				

	20	Chapman-Kolmogrov equations.		
	21	Classification of states of a Markov Chain.	1	
	22	Limiting Probabilities	1	
	Chapter4: Sections 4.1, 4.2, 4.3, 4.4			Min 15
V		Open Ended	12	
	23	Properties of exponential distribution, Counting processes, Poisson process, properties of Poisson process		

References:

- 1. S. Ross, "A First Course in Probability," Eighth Edition, Prentice Hall.
- 2. W. Feller, "An Introduction to Probability Theory and its Applications," Vol.I, John Wiley.
- 3. B.V. Gnedenko, "Theory of Probability," Chelsea, New York
- 4. S.M. Ross, "Stochastic Processes," second edition, John Wiley
- 5. S. Karlyn and H. Taylor, "A First course in Stochastic Processes", second edition, Academic Press

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	2	3	2	3	2	3	1	2
CO 2	2	3	2	2	3	2	3	3	3	1	3
CO 3	3	2	1	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	✓	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT6EJ304 (2)						
Course Title	MACHINE LEARNING - II						
Type of Course	Elective (Speci	alisation- Data Science)					
Semester	VI	VI					
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Machine Learn	ing - I					
Course Summary	This course studies advanced models of machine learning. Mastery of techniques like regression, classification, and dimensionality reduction will enable students to handle complex data sets, perform advanced analytics, and develop robust predictive models. Understanding kernel methods, SVMs, graphical models, and PCA will provide the necessary tools for tackling a wide range of data-driven challenges in real-world applications.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	To analyse and design support vector machines and kernel methods for learning problem.	An	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO2	To analyse graphical models for learning and explore belief propagation in graph models.	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO3	To analyse and apply PCA and dimensionality reduction techniques	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
# - Factual K	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text Book		Pattern Recognition and Machine Learning - Christopher - 2006	M. Bishop - S	pringer
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Kernel Methods	12	
	1	Review of linear regression and classification		
	2	Dual representations and construction of kernels		
	3	Radial basis function networks - Nadaraya-Watson model		
	4	Gaussian processes for regression and classification		
	5	Laplace approximation		
	6	Connection to neural networks		
	Chap	ter 6 of text book		
II		Support Vector Machines	12	
	7	Maximum Margin Classifiers		
	8	Relation to logistic regression		
	9	Regression using SVM.		
	10	Relevance Vector Machines		
	11	Regression and classification using RVM		
	Chap	ter 7 of text book		
III		Graphical Models	12	
	12	Bayesian Networks		
	13	Markov Random Fields		
	14	Factorization properties		
	15	Inference in Graphical Models		
	16	Factor graphs and sum-products algorithm		
	17	Belief propagation		
	Chap	ter 8 of text book		
IV		Principal Component Analysis	12	
	18	Maximum variance and minimum error PCA		

	19	Dimensionality reduction		
	20	Maximum likelihood PCA and EM algorithm		
	21	Bayesian PCA and factor analysis		
	22	Kernel PCA		
	Chap	ter 12 of text book		
V		Open Ended	12	
		1. Boosting		
		2. Convex learning problems		
		3. Regularization in convex learning		
		 Learning of convex Lipschitz and smooth bounded functions 		
		5. Stochastic gradient descent		
- Cambrid	tanding dge Un	, Machine Learning from Theory to Algorithms - Shai Shalev Shwar iversity Press - ISBN 978-1-107-05713-5 - 2014 of Machine Learning - Mehryar Mohri, Afshin Rostamizadeh, and A		

The MIT Press - 2012

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	2	3	2	3	3	3	1	3
CO 2	3	3	2	2	3	2	3	2	3	3	3	1	3
CO 3	3	3	2	2	3	2	3	2	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT5EJ305	MAT5EJ305							
Course Title	HIGHER AL	HIGHER ALGEBRA							
Type of Course	Elective								
Semester	V								
Academic Level	300 - 399								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Fundamental N	Fundamental Mathematics Concepts: Set, Functions, Logic							
Course Summary	This course explores topics that follow as a direct continuation of high school								
	algebra, like th	ne general theory of equation	ns, and classific	ation of second-					
	degree curves a	and surfaces.							

Course Outcomes (CO):

CO Statement	Cognitive	Knowledge	Evaluation					
	Level*	Category#	Tools used					
Understand and apply the algebraic	Ap	Р	Internal					
methods used in solving polynomial			Exam/Assign					
equations of low degrees and place them			ment/Seminar/					
in a general context			Viva / End					
			Sem Exam					
Understanding of the fundamental	U	С	Internal					
concepts of algebraic equations, including			Exam/Assign					
the Identity Theorem and the Fundamental			ment/Seminar/					
Theorem of Algebra.			Viva / End					
			Sem Exam					
Analyse and evaluate various solutions of	An	С	Internal					
equations, including Cardan's Formulas			Exam/Assign					
and trigonometric solutions, and identify			ment/Seminar/					
the irreducible cases.			Viva / End					
			Sem Exam					
ember (R), Understand (U), Apply (Ap), Ana	ulyse (An), Ev	valuate (E), Cro	eate (C)					
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
dge (M)								
	Understand and apply the algebraic methods used in solving polynomial equations of low degrees and place them in a general context Understanding of the fundamental concepts of algebraic equations, including the Identity Theorem and the Fundamental Theorem of Algebra. Analyse and evaluate various solutions of equations, including Cardan's Formulas and trigonometric solutions, and identify the irreducible cases. ember (R), Understand (U), Apply (Ap), Ana ual Knowledge(F) Conceptual Knowledge (C	Understand and apply the algebraic methods used in solving polynomial equations of low degrees and place them in a general contextApUnderstanding of the fundamental concepts of algebraic equations, including the Identity Theorem and the Fundamental Theorem of Algebra.UAnalyse and evaluate various solutions of equations, including Cardan's Formulas and trigonometric solutions, and identify the irreducible cases.Anember (R), Understand (U), Apply (Ap), Analyse (An), Ev ual Knowledge(F) Conceptual Knowledge (C) ProceduralEvel*	Level*Category#Understand and apply the algebraic methods used in solving polynomial equations of low degrees and place them in a general contextApPUnderstanding of the fundamental concepts of algebraic equations, including the Identity Theorem and the Fundamental Theorem of Algebra.UCAnalyse and evaluate various solutions of equations, including Cardan's Formulas and trigonometric solutions, and identify the irreducible cases.AnCember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Crau 					

Text	Camb	metry(2/e), David A Brannan, Mathew F. Esplen, Jero ridge University Press (2012) ISBN: 978-1-107-64783- ory of Equations, J. V. Uspensky, McGraw Hill (1948)	1	-
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70
Ι		Theory of Equations	16	
	1	Chapter II -Section 3: Division of Polynomials		
	2	Chapter II -Section 4: The Reminder Theorem		
	3	Chapter II- Section 5: Synthetic Division		
	4	Chapter II- Section 7: Taylor's Formula		
	5	Chapter III - Section 1: Algebraic Equations		
	6	Chapter III - Section 2: Identity Theorem		
	7	Chapter III - Section 3: The Fundamental Theorem of Algebra		
II		Cubic And Biquadratic Equations	16	
	8	Chapter III - Section 4: Imaginary Roots of Equations with Real Coefficients		
	9	Chapter III - Section 5: Relations Between Roots and Coefficients		
	10	Chapter IV - Section 1: Limits of Roots Section 2: A Method to Find an Upper Limit of Positive Roots		
	11	Chapter IV - Section 3: Limit for Moduli of Roots		
	12	Chapter V - Section 1: What is the "Solution" of an Equation?, Section 2: Cardan's Formulas, Section 3: Discussion of Solution		
	13	Chapter V - Section 4: Irreducible Case Section 5: Trigonometric Solution		
	14	Chapter V- Section 6: Solution of Biquadratic Equations		

III		Conic Sections	12	
	15	Section 1.1.1: Conic Sections, Section 1.1.2: Circles		
	16	Section 1.1.3: Focus-Directrix Definition of the Non- Degenerate Conics		
	17	Section 1.1.4: Focal Distance Properties of Ellipse and Hyperbola		
	18	Section 1.1.5: Dandelin Spheres		
IV		Quadric Surfaces	4	
	19	Section 1.2.2: Reflections		
	20	Section 1.3: Recognizing Conics		
	21	Section 1.4.1: Quadric Surfaces in \mathbb{R}^3		
	22	Section 1.4.2: Recognizing Quadric Surfaces		
V		Open Ended Module: Affine Maps	12	
	1	Geometry and Transformations - What is Euclidean Geometry? Isometry, Euclidean properties, Euclidean transformation, Euclidean-Congruence		
	2	Affine Transformations, Basic Properties of Affine Transformations		
	3	Fundamental Theorem of Affine Geometry		

References:

1. Higher Algebra, Barnard & Child, St. Martin's Press, NY, USA (Public Domain, Copyright exhausted)

2. Thomas & Finney, Calculus & Analytic Geometry, Addison Wesley

3. George A Jennings: Modern Geometry with Applications Universitext, Springer (1994) ISBN: 0-387-94222-X

4. Walter Meyer: Geometry and its Application(2/e) Elsever, Academic Press(2006) ISBN: 0-12-369427-0

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	1	2	1	3	0	1
CO 2	3	3	2	2	3	1	2	1	3	0	1
CO 3	2	3	3	2	3	1	3	1	3	0	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	\checkmark	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT5EJ306	MAT5EJ306						
Course Title	LINEAR PRO	LINEAR PROGRAMMING						
Type of Course	Elective							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit	Credit Lecture/Tutorial		Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Calculus	s and Linear Algebra						
Course	Linear Progra	mming is a mathematical n	nodelling techn	ique in which a				
Summary	linear function	is maximized or minimiz	ed when subject	ected to various				
	constraints. The	is technique has been useful for	or guiding quan	titative decisions				
	in business pla	nning, in industrial engineer	ing, and—to a 1	lesser extent—in				
	the social and	physical sciences. This cour	se begins with	convex sets and				
	extrema of fun	ctions for a sound basis of th	he subject. It th	en develops into				
	LP problems in	cluding Transportation and A	Assignment prol	blems.				

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Able to identify and analyse the properties of convex sets, including open and closed sets, convex hulls, and vertices.	An	С	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
CO2	To demonstrate proficiency in applying optimization techniques such as gradient descent, constrained extrema, and the method of Lagrange multipliers to solve real-valued functions.	Ар	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
CO3	To formulate and solve linear programming problems, including transportation and assignment problems, using techniques such as simplex method and duality.	U	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
Factu	emember (R), Understand (U), Apply (A al Knowledge(F) Conceptual Knowledge vledge (M)			

Text book		ization Methods in Operation Research and System Analysis (4 th edition), K.V C Mohan, New Age International (P)Limited (2016)
Module	Unit	Content
I	Unit	Module I
1	1	Chapter 1 Section 11: Open and Closed sets in E _n
	2	Section 12: Convex Linear Combination, Convex Sets
	3	Section 13: Intersection of Convex Sets, Convex Hull of a Set
	_	Section 14: Vertices or Extreme Points of a Convex Set
	4	Section 15: Convex Polyhedron
		Section 16: Hyperplanes, Half-spaces and Polytopes
	5	Section 17: Separating and Supporting Hyperplanes (Proof of Theorem 18 is
		optional)
		Section 18: Vertices of a Closed Bounded Convex Set (Proof of Theorem
		21,22,23 are optional)
		Section 19: Summary
		Section 20: Quadratic Forms
Π		Module II
	6	Chapter 2 Section 11: Convex Functions
	7	Section 12: General Problem of Mathematical Programming
	8	Chapter 3 Section 1: Introduction
		Section 2: LP in Two-Dimensional Space
	9	Section 3: General L P Problem
		Section 4: Feasible Solutions (Proof of Theorem 1 is optional)
		Section 5: Basic Solutions
		Section 6: Basic Feasible Solutions (Proof of Theorem 2,3 are optional)
		Section 7: Optimal Solution (Proof of Theorem 4,5 are optional)
		Section 8: Summary
	10	Section 9: Simplex Method
		Section 10: Canonical Form of Equations
		Section 11: Simplex Method (Numerical Example)
		Section 12: Simplex Tableau
	11	Section 13: Finding the First b.f.s; Artificial Variables
		Section 14: Degeneracy
	12	Section 15: Simplex Multipliers
III		Module III
	13	Chapter 3 Section 17: Duality in LP Problems
	14	Section 18: Duality Theorems (Proof of Theorem 7,8,9, 10,11 are optional)
		Section 19: Applications of Duality
	15	Section 20: Dual Simplex Method
		Section 21: Summary of Simplex Methods (III Revised Simplex Method is
		optional)
	16	Section 22: Applications of LP
IV		Module IV

	17	Chapter 4 Section 1: Introduction							
	1/	Section 2: Transportation Problem							
		Section 2: Transportation Array							
		Section 4: Transportation Matrix							
		Section 4: Transportation Watrix Section 5: Triangular Basis (Proof of Theorem 1 is optional)							
	10	Section 6: Finding a Basic Feasible Solution							
	18								
	19	Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional) Section 9: Changing the Basis							
	20	Section 9: Changing the Basis							
	20	Section 10: Degeneracy Section 11: Unbalanced Problem							
	21								
	21	Section 14: Assignment Problem (Proof of Theorem 3 is optional)							
	22	Section 15: Generalized Transportation Problem							
		Exercise Questions in Assignment Problem							
\mathbf{V}		Open Ended							
		Linear Programming Using Scipy, Prog Reference 1.							
		Dual Simplex Solved Programming Exercises in Python from Vanderbei							
		(Reference 1), Prog Reference 2.							
		Linear Programming in Python using IBM CPlex Community Edition. Prog							
		Reference 3.							
		Transportation Problem in Python. Prog Reference 4.							
		Linear Programming in Julia. Prog Reference 5. Ch 3 Basics of Julia Programming							
		Language, Ch 5 The Simplex Method.							
	. Refer	rences:							
	1. G. Hadley : Linear Programming Addison-Wesley Pub Co Reading, Mass (1975)								
		2. S.S. Rao : Optimization – Theory and Applications (2nd Edn.) Wiley Eastern (P) Ltd. New Delhi.							
		issel L Ackoff and : Fundamentals of Operation Research Maurice W.Sasioni Wiley n Ltd. New Delhi. (1991)							
		narles S. Beightler, : Foundations of Optimization D.T. Philips & D.J. Wilde (2nd Prentice Hall of India, Delhi (1979)							
	0	amming References for Open-Ended section: ar Programming using Scipy, https://python.quantecon.org/lp_intro.html							
		derbei's book homepage: https://vanderbei.princeton.edu/LPbook/							
		ex Jupyter Notebook:							
		github.com/IBMDecisionOptimization/tutorials/blob/master/jupyter/Linear_Program_							
	ming.ip								
	Installa	tion: http://ibmdecisionoptimization.github.io/docplex-doc/README.md.html							

-	
	4. Solving Transportation Problem using Linear Programming in Python:
	https://machinelearninggeek.com/solving-transportation-problem-using-linear-
	programming-in-python/
	5. Changhyun Kwon, Julia Programming for Operations Research 2/e,
	https://www.softcover.io/read/7b8eb7d0/juliabook2/simplex

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	3	3	3	2	2	1	3	1	3	0	1
CO 3	2	3	3	2	3	1	3	1	3	0	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT6EJ305						
Course Title	TOPOLOGY	OF METRIC SPACES					
Type of Course	Elective						
Semester	VI						
Academic Level	300 - 399						
Course Details	Credit Lecture/Tutorial Practical Total Hou						
	per week per week						
	4 4 - 60						
Pre-requisites	1. Fundamenta	l Mathematics Concepts: Set,	Functions, Log	gic			
	2. Real Analysis						
Course	This course familiarises students with the basic tools and phenomenology of						
Summary	topology by introducing metric spaces as a generalisation of the familiar						
	Euclidean spac	es.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools					
		Level*	Category#	used					
CO1	Demonstrate understanding of	U	С	Internal					
	fundamental concepts in metric			Exam/Assignment/					
	spaces and basic examples of			Seminar/ Viva /					
	metric spaces.			End Sem Exam					
CO2	To analyse and evaluate the	An	Е	Internal					
	basic topology of metric spaces,			Exam/Assignment/					
	including open sets, closed sets,			Seminar/ Viva /					
	interior, closure, and boundary			End Sem Exam					
	points								
CO3	Demonstrate proficiency in	Ap	Р	Internal					
	applying concepts of			Exam/Assignment/					
	convergence, completeness, and			Seminar/ Viva /					
	continuity in metric spaces,			End Sem Exam					
	including understanding Cauchy								
	sequences, completeness, and								
	continuity of functions.								
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)								
# - Fac	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)								
Metaco	ognitive Knowledge (M)								

Textbook	ok Introduction to Topology and Modern Analysis, George F. Simmons, Krieger Publishing Company (1982) ISBN-0-89874-551-9						
Module	e Unit Content						
Ι		Introduction to Metric Spaces	12)				
	1	Chapter 1 Section 5: Partitions and Equivalence Relations					
	2	Chapter 1 Section 6: Countable Sets					
	3	Chapter 1 Section 7: Uncountable Sets					
	4	Chapter 2 Section 9: The Definition and Some Examples (Topics up to and including Example 2)	12				
	5	Chapter 2 Section 9: The Definition and Some Examples (Topics from Example 3 onwards)					
II		Basic Topology of Metric Spaces					
	6	Chapter 2 Section 10: Open Sets (Topics up to and including Theorem A)					
	7	Chapter 2 Section 10: Open Sets (Theorem B and Theorem C)					
	8	Chapter 2 Section 10: Open Sets (Topics from Theorem D onwards)	10				
	9	Chapter 2 Section 11: Closed Sets (Topics up to and including Theorem C)					
	10	Chapter 2 Section 11: Closed Sets (Topics from Theorem D onwards)					
III		Convergence, Completeness & Continuity					
	11	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Topics up to Theorem A)					
	12	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Theorem A and Theorem B)					
	13	13 Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Topics from Theorem C onwards)					
	14	Chapter 2 Section 13: Continuous Mappings (Topics up to and including Theorem A)					
	15	Chapter 2 Section 13: Continuous Mappings (Theorem B and Theorem C)					
	16	Chapter 2 Section 13: Continuous Mappings (Topics from Theorem D onwards)					
IV		Special Classes of Metric Spaces					
	17	Chapter 2 Section 14: Spaces of Continuous Functions (Topics up to First Lemma)					
	18	Chapter 2 Section 14: Spaces of Continuous Functions (First Lemma, Second Lemma)					
	19	Chapter 2 Section 14: Spaces of Continuous Functions (Topics from Theorem A onwards)					
	20	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics up to First Lemma)	14				
	21	Chapter 2 Section 15: Euclidean and Unitary Spaces (First Lemma, Second Lemma)					
	22	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics from Theorem A onwards)					
		Compactness In Metric Spaces					

References	V (Open Ended)	The Heine-Borel Property Bolzano-Weierstrass Property Lebesgue's Covering Lemma Sequential Compactness Compactness – Open Cover Formulation Total Boundedness Compactness, Completeness & Total Boundedness Equicontinuity & the Arzela-Ascoli Theorem	12
------------	-------------------	---	----

References:

- 1. Introduction to General Topology, K. D. Joshi, New Age International.
- 2. A First Course In Topology, James R. Munkres, Prentice Hall of India
- 3. Topology of Metric Spaces, S. Kumaresan, Narosa Publishing House.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	1	2	1	3	0	1
CO 2	3	3	1	1	3	1	3	1	3	0	1
CO 3	3	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%) .

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	\checkmark	√	~	~	✓
CO 3	~	\checkmark	√	~	✓

Programme	B. Sc. Mathematics Honours									
Course Code	MAT6EJ306									
Course Title	INTRODUCTION TO FOURIER ANALYSIS									
Type of Course	Elective									
Semester	VI	VI								
Academic Level	300-399	300-399								
Course Details	Credit	Total Hours								
		per week	per week							
	4 4 -									
Pre-requisites	An introductor	y course in Real Analysis inc	luding series of	functions						
Course	Fourier analysi	s is a fundamental component	t in the tool-kit o	of every pure and						
Summary	applied mather	matician with numerous app	plications to si	gnal processing,						
	image processi	ng, tomography and several o	other areas of en	gineering. In this						
	course we shall	l look at the most basic theore	etical foundation	ns of this subject.						
	Along the way	we shall have to recapitulate s	some of the requ	isite results from						
	functional anal	ysis.								

СО	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate proficiency in defining and applying concepts related to inner product spaces, including orthogonality and linear operators.	Ap/An	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Describe orthogonality, including definitions and examples. Demonstrate the use of orthogonal projections, including the Gram- Schmidt orthogonalization process.	Ap	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam
CO3	Compute Fourier series on various intervals including cosine and sine expansions, and understand the complex form of Fourier series.	Ар	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
# - Fac	nember (R), Understand (U), Apply (Ap tual Knowledge(F) Conceptual Knowled ognitive Knowledge (M)	•	, ,	

Text		Course in Wavelets with Fourier Analysis, 2e, Albert	Boggess	s and				
Book		Francis J Narcowich, Wiley.UnitContent						
Module	Unit	Content	Hrs (48+ 12)	Marks Ext: 70				
I		12						
		Quick review through the preface of the text book for the discussions Fourier Analysis and Wavelets						
	1	0.1 and 0.2 – Motivation, definition and examples of inner product.						
	2	0.3 – The spaces L ² and ℓ^2 – 0.3.1 - Construction of inner products in L ² and ℓ^2 .						
	3	0.3.2 – Convergence in L ² versus uniform convergence.						
	4	0.4 – Schwarz Inequality						
	5	0.4 - Triangle Inequality						
	6	0.5 – Orthogonality						
		0.5.1 – Definitions and examples.						
	7	0.5.2 – Orthogonal Projections – up to and including example 0.23						
II		Inner Product Spaces – contd.	12					
	8	0.5.2 – Orthogonal Projections – rest of the section						
	9	0.5.3 – Gram – Schmidt Orthogonalization.						
	10	0.6 – Linear Operators and their Adjoints						
		0.6.1- Linear Operators						
	11	0.6.2 – Adjoints - (up to and including Example 0.31)						
	12	0.6.2 – Adjoints – rest of the section.	1					
III		Fourier Series	12	1				

	13	1.1 – Introduction (1.1.1 to 1.1.3)						
	14	1.2 – Computation of Fourier Series						
		1.2.1 – On the interval [$-\pi$, $+\pi$] – with examples						
	15	15 1.2.2 – Other intervals – with examples						
	16							
	17	1.2.5 – The complex form of Fourier Series						
	Mod	dules III and IV are presented only for motivations an	d	1				
	1	mples for the theory. All the proofs of theorems in thes						
		lules are optional to study and exempted from externa						
	exa	mination.						
IV		Fourier Transforms	12]				
	18	2.1 – Informal development of the Fourier transform						
		2.1.1 – Fourier Inversion Theorem						
	19	2.2.2 – Fourier Transform of a convolution						
	20	2.2.3 – Adjoint of the Fourier Transform						
	21	2.2.4 – Plancherel Theorem						
	22	More problems from the above sections		-				
V (Open		Fourier Analysis	12	1				
Ended)	at the di Wavelet book). T reconstr which is	aving the above basics of Fourier Analysis, one can look screte versions of Fourier Analysis and can enter into the theory (for instance refer sections 4.1 and 4.2 of text The Haar wavelet analysis with its decomposition and function theorems open the window to signal theory is an active area of research for both pure and applied maticians						
	Į			I				

References

- 1. Ten lectures on Wavelets, Daubechies, Philadelphia, SIAM, 1992.
- 2. Fourier Analysis and its Applications, Gerald B Folland, Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, California.
- 3. Introduction to Fourier Analysis on Euclidean Spaces, Elias M Stein and Guido -Weiss, Princeton University Press.
- 4. How to make Wavelets, Robert S. Strichartz, The American Mathematical Monthly.

Note: 1) Optional topics are exempted for end semester examination.2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	3	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	✓	~	✓
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours									
Course Code	MAT8EJ401									
Course Title	ADVANCED TOPOLOGY									
Type of Course	Elective									
Semester	VIII									
Academic Level	400-499									
Course Details	Credit Lecture/Tutorial Practicum Total H									
		per week	per week							
	4	4	0	60						
Pre-requisites	1. Topology I									
Course	The advanced topo	ology course extends Topo	logy I by intro	ducing further						
Summary	concepts and tools	s. It starts with the produ	ct topology ar	nd explores its						
	properties. Embedd	dings, including the Tycho	noff embeddin	g theorem, are						
	discussed. Urysohr	i's Lemma from the previo	us course is us	ed to prove the						
	Urysohn Metrisatio	on Theorem. Nets and filt	ers are introdu	ced to address						
	sequence limitation	ns. Various forms of compa	actness and con	npactifications						
	are examined, with	a focus on their relation to o	completeness in	metric spaces.						
	The course conclu	des with important results	s such as the	Baire category						
	theorems.									

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Learn basic structures and	U	F	Internal
	constructions in Topology			Exam/Assignment/
				Seminar/ Viva / End Sem
				Exam
CO2	Analyse and apply the concepts	An	Р	Internal
	of Nets, Filters, and			Exam/Assignment/
	Convergence in the context of			Seminar/ Viva / End Sem
	Topological Spaces			Exam
CO3	To develop the student's ability	Ap	С	Internal
	to handle abstract ideas of			Exam/Assignment/
	mathematics and			Seminar/ Viva / End Sem
	mathematical proofs			Exam
* - Rei	member (R), Understand (U), Appl	ly (Ap), Anal	yse (An), Evalu	uate (E), Create (C)
# - Fac	ctual Knowledge(F) Conceptual Kr	nowledge (C)	Procedural Kn	owledge (P)
Metac	ognitive Knowledge (M)			

Text Book		ction to General Topology, 2 nd Edition, K. D. Jo tional Publishers, 1983.	shi, New Aş	ge	
Module Unit		Content	Hrs (48+12)	External Marks (70)	
Ι		Chapter 8: Products & Coproducts	10		
	1	Cartesian Products of Families of Sets – 8.1			
	2	The Product Topology – 8.2			
	3	Productive Properties – Separation Axioms 8.3			
	4	Productive Properties – Connectedness – 8.3			
	5	Countably Productive Properties – Metrisability–8.4			
	6	Countably Productive Properties – Countability–8.4			
	7	The Case of Separability – 8.4			
II		Chapter 9: Embedding & Metrisation	10		
	8	Evaluation Functions into Products – 9.1			
	9	Embedding Lemma – 9.2			
	10	Tychonoff Embedding – 9.2			
	11	The Urysohn Metrisation Theorem – 9.3			
III		Chapter 10: Nets & Filters	12		
	12	Definition & Convergence of Nets – 10.1			
	13	Topology & Convergence of Nets – 10.2			
	14	Nets & Compactness – 10.2			
	15	Filters & Their Convergence – 10.3			
	16	Topology & Filters – 10.3			
	17	Ultrafilters and Compactness – 10.4			
IV	Chap 1	1,12: Compactness & Complete Metric Spaces	16		

	18	Variations of Compactness – 11.1		
	19	The Alexander Sub-base Theorem – 11.2		
	20	Local Compactness – 11.3		
	21	Compactifications – 11.4 (Wallman Compactification 11.15 to 11.20 may be relegated to Practicum)		
	22	Complete Metrics – 12.1		
	23	23 Consequences of Completeness – 12.2		
	24	Completions of a Metric – 12.4		
V	Practicum:		12	
	1	Wallman Compactification: 11.15 to 11.20		
	2	12.3: Some Applications (of Completeness)		
	3	Chapter 13: Category Theory		
	4	Chapter 14: Uniform Spaces		
	5	Chapter 15 Section 2: Paracompactness		
	5	Chapter 15 Section 2. I dideompacticity		
	6	Chapter 15 Section 3: Use of Ordinal Numbers		
	_			

References

- 1. Topology, J. R. Munkres, Prentice Hall of India, 2000.
- 2. General Topology, S. Willard, Addison Wesley Pub. Company, 1976.
- 3. General Topology, J. L. Kelley, D. van Nostrand, 1955.
- 4. Introduction to Topology and Modern Analysis; G. F. Simmons, McGraw-Hill, 1963.
- 5. Topology, James Dugundji, Prentice Hall of India, 1975.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	1	2	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	3	3	3	3	2	1	2	1	2	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	✓	✓	~	\checkmark
CO 3	√	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT8EJ402						
Course Title	PARTIAL DI	FFERENTIAL EQUATIO	NS				
Type of Course	Elective						
Semester	VIII						
Academic Level	400-499						
Course Details	Credit Lecture/Tutorial Practical Total Hou						
		per week	per week				
	4	4	-	60			
Pre-requisites	1. Real Analysi Equations	1. Real Analysis 2. Basic Concepts of Vector functions 2. Ordinary Differential Equations					
Course Summary	This introductory Partial Differential Equations (PDEs) course equips students with the mathematical tools and problem-solving skills necessary to analyse and solve real-world phenomena governed by PDEs. The syllabus focuses on analytical methods for solving first and second-order PDEs, laying the foundation for further exploration of advanced PDEs and their applications.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understanding of basic concepts, definitions, and mathematical problems related to first-order quasilinear equations.	U	С	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam				
CO2	Analyse and evaluate the classification of second-order linear equations, including the Cauchy problem and wave equations.	An	Е	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam				
CO3	Evaluate solutions for boundary value problems and apply them in solving PDEs.	E	Р	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam				
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Module	Unit	Content	Hrs (48 +12)	Ext Mar (70
Ι	I	First Order Quasilinear Equations and Method of Characteristics	9	
	1	Basic Concepts, definitions and mathematical problems		
	2	Classification of first order equations		
	3	Construction of a first order equation		
	4	Geometrical Interpretation of a First- Order Equation		
	5	Method of characteristics and General solutions		
	Sectio	ons from Text: 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 2.5.		
II	Cla	assification of Second Order Linear Equations, The Cauchy Problem and Wave Equations	21	
	6	Second order equations in two independent variables		
	7	Canonical Forms		
	8	Equations with constant coefficients		
	9	General Solutions	1	
	10	The Cauchy Problem		
	11	Homogeneous Wave Equations	1	
	12	Initial Boundary-Value Problems		
	13	Equations with Nonhomogeneous Boundary Conditions		
	14	Vibration of Finite String with Fixed Ends		
	15	Nonhomogeneous Wave Equations		
	16	The Riemann Method		

	Sectio	ons from Text: 4.1 - 4.4, 5.1, 5.3-5.8					
III		Method of Separation of Variables	13				
	17	Introduction					
	18 Separation of Variables						
	19 The Vibrating String Problem						
	20 Existence and Uniqueness of Solution of the Vibrating String Problem						
	21	The Heat Conduction Problem					
	22	Existence and Uniqueness of Solution of the Heat Conduction Problem					
	23	The Laplace and Beam Equations					
	24	Nonhomogeneous Problems					
	Sectio	ons from Text: 7.1-7.8					
IV		Boundary Value Problems and Applications	7				
	25	Boundary Value Problems					
	26	Maximum and Minimum Principles					
	27	Uniqueness and Continuity Theorems					
	28	Dirichlet Problem for a circle					
	29	Neumann Problem for a circle					
	30	Dirichlet Problem for a rectangle					
	31	The Neumann Problem for a Rectangle					
	Sectio	ons from Text: 9.1-9.4, 9.6, 9.7, 9.8,9.9					
V (Open Ended)	(Green's Functions, Boundary Value Problems and Nonlinear Equations	12				
		Green's Functions for Ordinary Differential Equations, Construction of Green's Functions, The Dirac Delta Function, Properties of Green's Functions, Method of Green's Functions (only for Laplace operator) Nonlinear PDEs -brief overview from any text					

References:

1. Partial Differential Equations -An Introduction, Second Edition, Walter A. Strauss, John Wiley and Sons Limited.

2. Partial Differential Equations-Classical Theory with a Modern Touch, A.K. Nandakumaran, P.S. Datti, Cambridge-IISc Series.

3. Elements of Partial Differential Equations, I.N. Sneddon, McGraw-Hill, New York (1972).

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	2	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT8EJ403						
Course Title	RINGS AND N	AODULES					
Type of Course	Elective						
Semester	VIII						
Academic	400-499	400-499					
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Elementary number theory, algebra, combinatorics, basic linear algebra						
Course	This course is a self-contained elementary introduction to Rings and Modules.						
Summary	The course will	The course will cover basic topics of Ring Theory and Module Theory which is					
	a core course in	Algebra					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and differentiate between various types of rings, including rings of continuous functions, matrix rings and polynomial rings	U	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Analyse and apply the concepts of ideals within rings, including definitions, maximal ideals, generators for subrings and ideals.	An	Ар	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Evaluate and synthesize the concepts of homomorphisms of rings, including quotient rings, ideals in quotient rings, endomorphism rings and field of fractions.	E	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	mber (R), Understand (U), A al Knowledge(F) Conceptual			

Text book							
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70			
Ι		Rings		(/0			
	1	Chapter 1 – Section 1.1: Terminology	1				
	2	Chapter 1 – Section 1.2: Rings of Continuous functions	1				
	3	Chapter 1 – Section 1.3 to 1.5: Matrix Rings, Polynomial Rings	1				
		and Power series rings	12				
	4	Chapter 1 – Section 1.8 to 1.9: Some Special Rings and Direct Products					
	5	Chapter 1 – Section 1.10 to 1.12: Several Variables, Opposite					
		rings, Characteristic of a ring					
Π		Ideals					
	6	Chapter 2 – Section 2.1 to 2.2 : Definitions, Maximal Ideals					
	7	Chapter 2 – Section 2.3: Generators for subrings and Ideals	12				
	8	Chapter 2 – Section 2.4: Basic Properties of Ideals					
	9	Chapter 2 – Section 2.5: Algebra of Ideals					
III		Homomorphisms of Rings					
	10	Chapter 2 – Section 2.6 & 2.7 : Quotient rings and Ideals in Quotient rings					
	11	Chapter 3 – Section 3.1: Definition and Basic Properties					
	12	Chapter 3 – Section 3.2 : Fundamental Theorems of	12				
	10	Homomorphisms	-				
	13	Chapter 3 – Section 3.3: Endomorphism Rings	-				
	14	Chapter 3 – Section 3.4: Field of Fractions	-				
TT 7	15	Chapter 3 – Section 3.5: Prime Fields					
IV	16	Modules	-				
	16	Chapter 5: Modules: Section 5.1: Definition and Examples	-				
	17	Chapter 5: Section 5.2 to 5.4: Direct sums, Free Modules and Vector spaces	12				
	18	Chapter 5: Section 5.4 to 5.3: Direct sums and Free Modules	-				
	19	Chapter 5: Section 5.6: Quotient Modules	-				
	20	Chapter 5: Section 5.7: Homomorphisms					
	21	Chapter 5: Section 5.8: Simple Modules					
V		Open Ended	12				
	1	ian Modules and Rings, Noetherian Modules and Rings, Nil cal, Jacobson Radical					
References	1	. John B. Fraleigh, A First Course in Abstract Algebra, 7th Edition 2002	on,				
	2	. M. Artin: Algebra, Prentice Hall, 1991					
	3	. Thomas W. Hungerford, Algebra, Springer, 2003					
	4	. Joseph Gallian, Contemporary Abstract Algebra, 7th Edition, C Learning, 2009.	Cengage				
	5	. D.M. Burton, A First Course in rings and ideals, Addison- Wes 1970.	ley,				

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	2	3	2	1	3	1	3	1	3	0	1
CO 3	2	2	2	1	3	1	3	1	3	0	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation				
-	Nil				
1	Slightly / Low				
2	Moderate / Medium				
3	Substantial / High				

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT8EJ404							
Course Title	CODING THEORY							
Type of Course	Elective							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Linear Algebra, Algebra							
Course Summary	The course helps the student to understand various algebraic codes, - their encoding and decoding methods and the mathematical tools used in their design.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Construct the parity check/generator	Ap	C	Internal
	matrix of a linear code.			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO2	Calculate bounds on rate and	An	Р	Internal
	listance of a given linear code using			Exam/Assignment/
	various bounds.			Seminar/ Viva / End
				Sem Exam
CO3	Design cyclic codes of a given rate	Ар	Р	Internal
	and distance parameters and decode			Exam/Assignment/
	t using various standard decoding			Seminar/ Viva / End
	procedures.			Sem Exam
* - Ren	nember (R), Understand (U), Apply (A	p), Analyse (An), Evaluate (E), Create (C) #
Factu	al Knowledge(F) Conceptual Knowled	ge (C) Procee	lural Knowledg	e (P) Metacognitive
Knowl	edge (M)			

Text		an, W. Cary, and Vera Pless. Fundamentals Cambridge university press, 2010.	of error-cori	recting
Module	Unit	Content	Hrs (48+12)	External Marks (70)
Ι	Linear	Codes	12	
	Text Se 1.11.2	ections: 1.1, 1.2, 1.4, 1.5.1 to 1.5.3, 1.8, 1.10,		
	1	Binary and Prime Fields		
	2	Linear Codes - Generator and Parity Check Matrix		
	3	Weights and Distances		
	4	Punchuring, Shortening and Extension		
	5	Hamming Codes		
	6	Reed Muller Codes		
	7	Encoding Linear Codes		
II	Bounds	s on Linear Codes	5	
	Text Se	ections: 2.2, 2.4, 2.8		
	8	Plotkin Bound		
	9	Singleton Bound and MDS codes		
	10	Gilbert - Varshamov Lower Bound		
	11 Asymptotic Singleton and Plotkin Bounds			
III	Finite l	Fields and Cyclic Codes	15	
	Text Se	ections: 3.1 to 3.7 and 4.1, 4.2, 4.5.		
	12	Finite fields and elementary properties		
	13	Polynomials and Euclid's Algorithm		
	14	Primitive Elements		
	15	Construction of Finite fields		

	1				
	16	Cyclotomic Polynomials			
	17	Basic Theory of Cyclic Codes			
	18	BCH Bound.			
IV	BCH a	nd Reed Solomon Codes	16		
	Text S	ections: 5.1, 5.2, 5.3, 5.4.1 to 5.4.3			
	18	BCH Codes			
	19	Reed Solomon Codes and their generalization.			
	20	Peterson–Gorenstein–Zierler Decoding Algorithm			
	21	Berlekamp Massey Decoding Algorithm			
	22	Sugiyama Decoding Algorithm (Euclid's Algorithm)			
V		OPEN ENDED	12	-	
	1	List decoding and Guruswami Sudan Algorithm			
	2	Weight Distributions of Codes and McWilliams Identities			
	3	Self-dual codes.			
	4	Codes on Projective Planes			
	5	Codes over Z4			
	6	Convolutional Codes			
References		Assmus, Jr. and J. D. Key, Designs and Their C idge University Press, 1993.	odes. Londo	n:	
	2. R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983.				

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with	PSOs and POs:
---------------------	----------------------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	0	3	1	2	1	3	0	1
CO 2	3	2	2	0	3	1	3	1	3	0	1
CO 3	3	3	2	0	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours								
Course Code	MAT8EJ405									
Course Title	AXIOMATIC FO	AXIOMATIC FOUNDATIONS OF MATHEMATICS								
Type of Course	Elective									
Semester	VIII									
Academic Level	400-499									
Course Details	Credit	Lecture/Tutorial	Practical	Total						
		per week	per week	Hours						
	4	4	-	60						
Pre-requisites	Nil									
Course	The course goes	into the philosophy of ma	athematics, mo	odern axiom						
Summary	methods, controve	ersies in set theory arou	ind axiom of	choice, its						
	implications and	various philosophical alte	rnative approa	iches to the						
	foundations of mat	hematics.								

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Axiomatic	An	С	Internal
	Systems and Logical			Exam/Assignment
	Deductions			/ Seminar/ Viva /
				End Sem Exam
CO2	Explore Axioms and their	Ap	С	Internal
	Interpretation of			Exam/Assignment
	Mathematical Structures			/ Seminar/ Viva /
				End Sem Exam
CO3	Investigate Properties of	Е	Р	Internal
	standard sets in			Exam/Assignment
	Mathematics and obtain			/ Seminar/ Viva /
	their axiomatic			End Sem Exam
	constructions			
* - Rei	member (R), Understand (U)), Apply (Ap), A	nalyse (An), Eva	luate (E), Create (C)
# - F	actual Knowledge(F) Cond	ceptual Knowled	dge (C) Procedu	ral Knowledge (P)
Metaco	ognitive Knowledge (M)			

Detailed Syllabus:

Module	Unit	Content	Hrs	Ext. Marks
			(60)	(70)
Ι	Axiom	atic Method (Up to Chapter 3 Section 5 of Text Book)	12	
	1	Description - undefined terms, axioms, logical deductions and proofs. Case study with axioms of points and lines.		
	2	Axioms and Interpretation (models): consistency (satisfiability), completeness, categorically and independence.		
	3	Case Study with axioms of order and equivalence.		
	4	Sets and Russal's Paradox.		
	5	Finite and Infinite Sets,		
	6			
II	Set The Book)	eory: Cardinals (Chapter 3, Section 6 to Chapter 4 of Text	12	
	7	Infinite Sets - Ordinary and Dedekind Infinity and their equivalence		
	8	Axiom of Choice		
	9	Countable Sets and their properties		
	10	Diagonalization and Uncountable Sets, Irrational Numbers		
	11	Cardinal Numbers and Bernstein's Equivalence Theorem		
	12	Well Ordered Sets and Transfinite Induction		
III	Set Th	eory: Ordering (Chapter 5)	12	
	13	Well Ordering Theorem		
	14	Ordinals and Burali-Forti Paradox		
	15	Properties of Ordinals and Continuum Hypothesis		
	16	Equivalence of Axiom of Choice, Well Ordering Theorem.		
	17	Zorn's Lemma and Equivalence with Axiom of Choice		
IV	Real N	Numbers (Chapter 6 of Text Book)	12]
	18	Ordering and Separability of Reals, and Dedekind Cuts.		

	19	Axiomatization of Real Numbers: Constituency, Independence and	
	20	Categoricalness of Real Number Axioms.	
	21	Definition of Real numbers from Peano's Axioms	
	22	Complex Numbers.	
V	Discus		
	1	Abstractions: Groups/Rings/Fields/Vector Spaces	
	2	Zermelo Fraenkel Axiomatization of Set Theory	
	3	Frege-Russell Thesis Set Theory using Predicate Calculus	
	4	Brower's Intuitionist Theory	
	5	Formal Deductions and Godel's Theorems.	

1. I. M. Copi, Symbolic Logic (5/e), Pearson, 2015.

2. U. C. Merzbach and C. B. Boyer, A History of Mathematics, (3/e), 2011.

3. I. Stewart and D. Tall, The foundations of Mathematics, (2/e), Oxford University Press 2015.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	3	3	3	0	0	3
CO 2	3	3	2	1	3	3	3	3	0	0	3
CO 3	3	3	2	1	3	3	3	3	0	0	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours								
Course Code	MAT8EJ406	MAT8EJ406							
Course Title	OPERATION	IS RESEARCH							
Type of Course	Major								
Semester	VIII								
Academic Level	400-499								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic Mathem	atical and Statistical knowled	lge.						
Course	This paper on	Operation Research introdu	ices the concept	ts like minimum					
Summary	path problem i	n network analysis, integer li	inear programm	ing problem and					
	dynamic progr	amming problem. Kuhn Tuc	ker condition to	solve nonlinear					
	programming p	problem is also discussed.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Solve Minimum Path Problem, Maximum flow problem	Ap	С	Internal Exam/ Assignment / Seminar/ Viva / End Sem Exam
CO2	Understand and solve ILP and MILP	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply Kuhn-Tucker Conditions to solve nonlinear programming problem	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
# - Fac	emember (R), Understand (U), Ap ctual Knowledge(F) Conceptual Kno ledge (M)			

-		tion Methods in Operation Research and System Analys n, New Age International (P) Limited (2016)	sis (4 th ed	lition), KV
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		Flow and Potential in Networks	14	
	1	5.1,5.2 - Graphs Definitions and Notation		
	2	5.3- Minimum Path Problem		
	3	5.4- Spanning tree of minimum length		
	4	5.5- Problem of Potential Difference		
	5	5.6- Scheduling of sequential activities		
	6	5.7 Maximum flow problem		
	7	Generalized Problem of Maximum flow		
II		Integer Programming	10	
	8	6.1, 6.2-Introduction, ILP in two dimensional space		
	10	6.3-General ILP and MILP problems		
	11	6.4- Examples of ILP in two dimensional space		
	12	6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method		
III		Kuhn-Tucker Theory and Nonlinear Programming	11	
	14	8.1, 8.2-Introduction, Lagrangian Function: Saddle Point,		
	15	8.3- Relation between Saddle Point of F(X,Y) and Minimal point of f(X)		
	16	8.4- Kuhn-Tucker Conditions		
	17	8.5- Primal and Dual Problems		
	18	8.6-Quadratic Programming		
IV		Dynamic Programming	13	
	19	10.1,10.2- Introduction, Problem 1: A Minimum Path Problem		

litively Separable Return, Problem IV: Single Additive	
•	
3, 10.9-Examples of Failure, Decomposition	
0-Backward and Forward Recursion	
Open Ended	12
ntroduction of new constraint, Deletion of variables,	
	Itistage Model 8, 10.9-Examples of Failure, Decomposition 10-Backward and Forward Recursion

References:

1. G. Hadley: Linear Programming Addison-Wesley Pub Co Reading, Mass (1975)

2. G. Hadley : Non-linear and Dynamic Programming Wiley Eastern Pub Co. Reading, Mass (1964) 3. S.S. Rao : Optimization - Theory and Applications (2nd Edn.) Wiley Eastern (P) Ltd. New Delhi.

4. Russel L Ackoff and : Fundamentals of Operation Research Maurice W.Sasioni Wiley Eastern Ltd. New Delhi. (1991)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	1	1	2	0	1
CO 2	3	3	1	1	2	1	1	1	2	0	1
CO 3	2	3	2	1	2	1	1	1	2	0	1

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT8EJ407	MAT8EJ407					
Course Title	CRYPTOGRAPHY						
Type of Course	Elective						
Semester	VIII						
Academic Level	400-499						
Course Details	Credit Lecture/Tutorial Practical Total Hours						
	per week per week						
	4 4 - 60						
Pre-requisites	Elementary nur	nber theory, algebra, combin	natorics, basic	linear algebra			
Course Summary	creating secur unintelligible t mathematical co Classical Crypt into cryptanalys Cryptographic I Students gain a	Elementary number theory, algebra, combinatorics, basic linear algebra Cryptography is a fundamental aspect of information security that involves creating secure communication by encoding messages to make them unintelligible to unauthorised users and Cryptography relies heavily on mathematical concepts. This course covers a wide range of topics, starting with Classical Cryptography, which includes simple cryptosystems. It also delves into cryptanalysis of these systems. Moreover, the course includes a section on Cryptographic Hash Functions, focusing on their role in ensuring data integrity. Students gain a comprehensive understanding of these concepts and techniques, equipping them with the knowledge and skills needed to analyze and implement					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Construct the parity check/generator matrix	Ap	С	Internal Exam/Assignment/
	of a linear code.			Seminar/ Viva / End
	Design cyclic codes of a given rate and distance parameters.			Sem Exam
CO2	Calculate bounds on rate and distance of a given linear code using various bounds.	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Decode a cyclic code using various standard decoding procedures.	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	ember (R), Understand (U), A		. , ,	
	al Knowledge(F) Conceptua	ll Knowledge (C) H	Procedural Knowledg	e (P) Metacognitive
Knowled	lge (M)			

Module	Unit	Content	Hrs (48+12)	Ext. Marks (70)
Ι		Classical Cryptography		
	1	Chapter 1: Section 1.1-1.1.1: Some Simple		
		Cryptosystems, Shift Cipher		
	2	Chapter 1: Sections 1.1.2 & 1.1.3: The Substitution		
		Cipher, Affine Cipher	12	Min.15
	3	Chapter 1: Sections 1.1.4 & 1.1.5: The Vigenere		
		Cipher, The Hill Cipher		
	4	Chapter 1: Sections 1.1.6 : The Permutation Cipher		
	5	Chapter 1: Sections 1.1.7: Stream Ciphers		
II		Cryptanalysis		
	6	Chapter 1: Section 1.2 & 1.2.1 : Cryptanalysis:		
		Cryptanalysis of the Affine Cipher		
	7	Chapter 1: Section 1.2.2 : Cryptanalysis of the Substitution Cipher	12	Min.15
	8	Chapter 1: Section 1.2.3 : Cryptanalysis of the	12	
	0	Vigenere Cipher		
	9	Chapter 1: Section 1.2.4 : A known plain textattack		
	-	on the Hill Cipher		
	10	Chapter 1: Section 1.2.5 : Cryptanalysis of theLFSR-	1	
		based Stream Cipher.		
III		Shannon's Theory		
	11	Chapter 2 : Sections 2.1, 2.2 : Introduction,	1	
		Elementary Probability Theory		
	12	Chapter 2 : Sections 2.3: Perfect Secrecy	10	Min.15
	13	Chapter 2 : Sections 2.4: Entropy, HuffmanEncodings]	
	14	Chapter 2 : Sections 2.5: Properties of Entropy]	
	15	Chapter 2 : Sections 2.6: Spurious Keys and Unicity	1	
		Distance		
	16	Chapter 2 : Sections 2.7: Product Cryptosystems]	
IV	Bloc	k Ciphers and Advanced Encryption Standard		
	17	Chapter 3: Sections 3.1 and 3.2 : Introduction,	1	
		Substitution - Permutation Networks		
	18	Chapter 3: Sections 3.3 (3.3.1 to 3.3.3): Linear	14	Min.15
		Cryptanalysis		
	19	Chapter 3: Sections 3.4 : Differential Cryptanalysis]	
	20	Chapter 3: Sections 3.5 (3.5.1,3.5.2) : Data]	
		Encryption Standard (DES), Description of DES,		
		Analysis of DES		
V		Open Ended		
		Cryptographic Hash Functions	12	
References		offstein: Jill Pipher, Joseph H. Silverman, An Introduction	to	
	Mathema	tical Cryptography, Springer International Edition.		
		N. (1994) A course in Number Theory and Cryptography, (SecondEd.),
	Springer-	Verlag		

3. Yan, S. Y. (2003) Primality Testing and Integer Factorization in Public-Key
Cryptography, Springer
4. H. Deffs & H. Knebl: Introduction to Cryptography, Springer Verlag, 2002
5. Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handbook of
Applied Cryptography, CRC Press, 1996.
6. William Stallings: Cryptography and Network Security Principles and
Practice, Third Edition, Prentice-hall India, 2003.
7. D. Boneh and V. Shoup: <u>A Graduate Course in Applied Cryptography</u> (V 0.5)
8. J. Katz and Y. Lindell. <i>Introduction to Modern Cryptography</i> (2nd edition)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	3	3	3	0	0	3
CO 2	3	3	1	1	3	3	3	3	0	0	3
CO 3	2	3	2	1	3	3	3	3	0	0	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	√	✓	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematic	s Honours				
Course Code	MAT8EJ408					
Course Title	INTRODUCTIO	INTRODUCTION TO FRACTALS				
Type of Course	Elective					
Semester	VIII	VIII				
Academic	400 - 499					
Level						
Course Details	Credit	Lecture/Tutorial	Practicum	Total		
		per week	per week	Hours		
	4	4	0	60		
Pre-requisites	1. Calculus					
	2. Geometry					
Course	This course equip	This course equips students with a thorough understanding of metric				
Summary	spaces and the mathematical foundations of fractal geometry, blending					
	theoretical insights	with practical application	5.	_		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic concepts to build fractals	U	С	Internal Examination/ Assignment/ End Sem examination
CO2	Interpret the dimension of fractals	An	Р	Internal Examination/Seminar/ Assignment/ Report/ End Sem examination
CO3	To understand how to construct fractals and apply them	Ар	М	Internal Examination/Seminar/ Report/ End Sem examination
# - Fa	emember (R), Understand (U), ectual Knowledge(F) Conceptua vledge (M)		• • •	

	Fract	als Everywhere, (2/e), Michael F Barnsley, Dover Pu	blications,	2012
Module	Unit	Content	Hrs (48+12)	External Marks(70)
Ι		Metric spaces	15	18
	1	Chapter II, Section 2:- Metric spaces		
	2	Section 3: - Cauchy Sequences, Limit Points, Closed		
		Sets, Perfect Sets, and Complete Metric Spaces		
	3	Section 4: - Compact Sets, Bounded Sets, Open Sets,		
		and Boundaries		
	4	Section 5: - Connected Sets, Disconnected Sets, and		
		Pathwise-Connected Sets		
II		Space of Fractals	15	17
	5	Section 6: - The Metric Space (H(X), h): The Space		
		Where Fractals Live		
	6	Section 7: - The Completeness of the Space of		
		Fractals – up to Theorem 7.1	-	
	7	Section 7: - The Completeness of the Space of		
	8	Fractals – From Theorem 7.1 onwards.	-	
	8	Chapter III, Section 1 – Transformations on the Real line – up to definition 1.3		
	9	Section 1: – Transformations on the Real line – from		
	9	definition 1.3 onwards.		
	10	Section 2: – Affine Transformations in the Euclidean	-	
	10	Plane		
	11	Section 6: – The Contraction Mapping Theorem	-	
III		Fractal Dimension	8	18
	12: - 5	Section 7: - Contraction Mappings on the Space of		_
		als - up to definition 7.1		
		Section 7: – Contraction Mappings on the Space of		
	Fracta	als – from definition 7.1 onwards		
	14: - \$	Section 8: – Two Algorithms for Computing Fractals		
	from	Iterated Function Systems		
	15: - 9	Section 10: – How to Make Fractal Models with the		
		of the Collage Theorem.		
		Chapter V, Section 1: – Fractal Dimension – up to		
	-	rem 1.2		
		Chapter V, Section 1: – Fractal Dimension – from		
** 7	Theor	rem 1.2 onwards.	10	
IV	10	Determination of Dimensions	10	17
	18	Section 2: – The Theoretical Determination of the		
	10	Fractal Dimension – up to Theorem 2.1(including)		
	19	Section 2: – The Theoretical Determination of the Fractal Dimension – rest of the section.		
	20			
	20	Section 3: – The Experimental Determination of the Fractal Dimension.		
	21	Section 4: – The Hausdorff-Besicovitch Fractal		
	<i>L</i> 1	Dimension – up to and including Theorem 4.2		

	22 Section 4: – The Hausdorff-Besicovitch Fractal		
	Dimension – rest of the section		
V	OPEN ENDED	12	
	Applications of Fractal functions, Fractal interpolation		
	functions, Space filling curves, Construction of Iterated		
	function systems, Applications of Fractals in medical		
	imaging		
References	1. The Fractal Geometry of Nature, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1982.		
	2. Chaos and Fractals: New Frontiers of Science, (2/e),		
	Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar		
	Saupe, Springer, 2004		
	3. Fractals: Form, Chance, and Dimension, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1977.		
	4. Fractals Everywhere, (2/e), Michael F. Barnsley,		
	Academic Press, 1993.		
	5. An Introduction to Fractals and Chaos, Michael F.		
	Barnsley, Cambridge University Press, 2021.		

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	2	2	2	1	1
CO 2	3	3	1	1	2	1	2	2	2	1	1
CO 3	3	2	2	1	2	1	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	√	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

RESEARCH METHODOLOGY

Programme	B. Sc. Mathematics Honours					
Course Code	MAT8CJ489					
Course Title	RESEARCH METHODOLOGY IN MATHEMATICS					
Type of Course	Major					
Semester	VII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	 Mathematical Logic and necessary exposure to set theory. Research Aptitude 					
Course Summary	MAT8CJ489, "Research Methodology in Mathematics," is designed to equip students with the essential skills and knowledge required for conducting research in mathematics effectively. This course focuses on various aspects of mathematical research, including axiomatic set theory, writing mathematics, researching and presenting findings, and using LaTeX for mathematical typesetting. Additionally, students explore open-ended research topics, allowing them to delve into specific areas of interest within mathematics. Throughout the course, students engage with key texts and resources, enabling them to develop a comprehensive understanding of research methodologies in mathematics.					

CO	CO Statement	Cognitive Level*	Knowledg e	Evaluation Tools used			
			Category#				
CO1	Set Theory and Mathematical Writing: Students will demonstrate proficiency in axiomatic set theory, including concepts such as relations, functions, and Peano axioms. Students will exhibit competence in mathematical writing.	Ар	С	Internal Examination/ Assignment/ End Sem examination			
CO2	Research Skills and Presentation Techniques: Students will acquire research skills, including identifying research topics. Students will develop effective presentation techniques, giving talks.	Ар	р	Internal examination/ Seminar/ Assignment/ End Sem examination			
CO3	Mathematical typesetting: to use LaTeX to create and typeset documents. Beamer Presentations and PSTricks also included.	Ар	Р	Internal Examination/Seminar/ Assignment/End Sem examination			
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Text Book	(2): A	 (1): Naive set theory: Paul R. Halmos, Courier Dover Publications, 2017. (2): A student's guide to the study, practice, and tools of modern mathematics, Donald Bindner and Martin Erickson. CRC Press, ISBN: 978-1-4398-4606-3 						
Module	Unit	Content	Hrs (48+12)	External Marks (70)				
Ι		Axiomatic Set Theory	12					
		(Sections 1 to 12 from the Text 1.)		-				
		1: The axiom of extension						
		2: The axiom of specification						
		3: Unordered pairs						
		4: Unions and intersections						
		5: Complements and powers						
		6: Ordered pairs						
		7: Relations						
		8: Functions						
		9: Families						
		10: Inverses and composites						
		11: Numbers						
		12: The Peano axioms						
II		Writing Mathematics (Text 2)	12					
		Chapter 1: How to Learn Mathematics						
		(A quick review – not part of evaluation)						
		Chapter 2: How to Write Mathematics -						
		2.1: What is the goal of mathematical writing?						
		2.2: General principles of mathematical writing						
		2.3: Writing mathematical sentences						
		2.4: Avoiding error						
		2.5: Writing mathematical solutions and proofs						

	2.6: Writing longer mathematical works		
	2.7: The revision process		
III	Researching and Presenting	12	
	(Text 2)		
	Chapter 3: How to Research Mathematics -		
	3.1: What is mathematical research?		
	3.2: Finding a research topic		
	3.3: General advice		
	3.4: Taking basic steps		
	3.5: Fixing common problems		
	3.6: Using computer resources		
	3.7: Practicing good mathematical judgment		
	Chapter 4: How to Present Mathematics -		
	4.1: Why give a presentation of mathematics?		
	4.2: Preparing your talk		
	4.3: DOs and DON'Ts		
	4.4: Using technology		
	4.5: Answering questions		
	4.6: Publishing your research		
IV	LATEX	12	
	(Text 2)		
	LaTeX		
	9.4 How to create and typeset a simple LATEX document		
	9.5 How to add basic information to your document		
	9.6 How to do elementary mathematical typesetting		
	9.7 How to do advanced mathematical typesetting		
	9.8 How to use graphics		

	10.1 What is PSTricks?		
	10.2 How to make simple pictures		
	10.3 How to plot functions		
	10.4 How to make pictures with nodes		
	Beamer		
	11.1 What is Beamer?		
	11.2 How to think in terms of frames		
	11.3 How to set up a Beamer document		
	11.4 How to enhance a Beamer presentation		
V	OPEN ENDED	12	
	(General Mathematical Research)		
	Lecturer's choices from the following Reference 1 (Princeton Companion), Section 1.4: General Goals		
	of Mathematical Research, p.48 to 78.		
	 Solving Equations Classifying Generalizing Discovering Patterns Explaining Apparent Coincidences Counting and Measuring Determining Whether Different Mathematical Properties are Compatible Working with Arguments that are not Fully Rigorous Finding Explicit Proofs and Algorithms What do you find in a Mathematical Paper? 		
	Reference 2 (Math Unlimited), any chapters of the lecturer's choices.		
	Reference 3 (Krantz, Mathematical Writing), any topics of lecturer's choice.		
Reference	1. The Princeton companion to mathematics, Timothy Gowe	ers, Ed., Princ	eton
	 University Press, 2008, ISBN ISBN 978-0-691-11880-2. Math Unlimited, Essays in Mathematics, Editors: R. Sujar C S Yogananda, CRC Press, 2012, ISBN: 978-1-57808-7 A Primer of Mathematical Writing Stayon C. Knotta 200 	04-4.	
	 A Primer of Mathematical Writing, Steven G. Krantz, 2nd 9781470436582. 	1 Eu., 2017, 1	

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	1	2	3	2	3	2	3	1	2
CO 2	1	2	0	3	3	3	3	2	3	1	3
CO 3	0	1	3	1	2	2	3	3	2	1	2

	Internal Exam	8		End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	\checkmark

MULTI-DISCIPLINARY COURSES

(MDC)

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1FM105(1)						
Course Title	MATRICES AND	MATRICES AND BASICS OF PROBABILITY THEORY					
Type of Course	MDC						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total			
		per week per week Hours					
	3 3 - 45						
Pre-requisites	Basic Arithmet	ic and Computational Skill	l.				
Course	The course "Matric	es and Basics of Probabilit	y Theory" prov	ides students			
Summary	with a comprehense	sive understanding of two	fundamental r	nathematical			
	concepts: matrices	and probability. The sylla	bus begins wit	h a focus on			
	the algebra of matr	ices, covering operations s	uch as addition	, subtraction,			
	multiplication, det	erminants, and inverses, f	ollowed by ap	plications in			
	solving systems of	equations. Transitioning to	probability the	ory, students			
	delve into basic	concepts, conditional pro	bability, the a	addition and			
	multiplication rule	es, and various counting	methods. Addi	tionally, the			
	course introduces	basic statistics, includin	g frequency a	listributions,			
	measures of centra	l tendency and variation, and	nd measures of	position.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the concepts			Internal
	of matrices and			Exam/Assignment
	determinants.	U	C	/ Seminar/ Viva /
				End Sem Exam
CO2	Apply matrix theory to			Internal
	solve systems of			Exam/Assignment
	equations.	Ар	Р	/ Seminar/ Viva /
				End Sem Exam
CO3	Understand concepts like			Internal
	measures of central			Exam/Assignment
	tendency, measures of	U	C	/ Seminar/ Viva /
	variation, measures of			End Sem Exam
	position and probability.			
* - Rei	member (R), Understand (U)), Apply (Ap), A	nalyse (An), Eval	uate (E), Create (C)
# - F	actual Knowledge(F) Cond	ceptual Knowle	dge (C) Procedu	ral Knowledge (P)
Metaco	ognitive Knowledge (M)			

		& Betsy Farber, Elementary Statistics, Picturin tion, ISBN: 978-0-321-91121-6, 2015.	ig the	World 6/e
Module	Unit	Content	Hrs (36+ 9)	Ext. Marks (50)
I		Algebra of Matrices (from text 1)	-)	
	1	Section 20.1 - Matrix notation		
	2	Section 20.2 - Addition, subtraction and multiplication of matrices		
	3	Section 20.3 to 20.4 - The unit matrix, The determinant of a 2 by 2 matrix.	9	Min 10
	4	Section 20.5 - The inverse or reciprocal of a 2 by 2 matrix.		
	5	Section 20.6 - The determinant of a 3 by 3 matrix		
	6	Section 20.7 - The inverse or reciprocal of a 3 by 3 matrix		
II		System of Equations From Text 1		
	7	Section 21.1 - Solution of simultaneous equations by matrices		
	8	Section 21.2 - Solution of simultaneous equations by determinants	9	Min 10
	9	Section 21.3 - Solution of simultaneous equations using Cramer's rule		
	10	Section 21.4 - Solution of simultaneous equations using the Gaussian elimination method.		
III		Basic Statistics From Text 2		
	11	Section 1.1 to 1.2 - An Overview of Statistics, Data Classification		

	12	Section 2.1 - Frequency Distributions and their Graphs	9	Min 10			
	13	Section 2.3 - Measures of Central Tendency					
	14	Section 2.4 - Measures of Variation					
	15	Section 2.5 - Measures of Position					
IV		Basics of Probability (from text 2)					
	16	Section 3.1 - Basic Concepts of Probability and Counting.	9	Min 10			
	17	Section 3.2 - Conditional Probability and the Multiplication Rule.					
	18	Section 3.3 - The Addition Rule.					
	19	Section 3.4 - Additional topics in probability and counting.					
V		Open Ended					
	Data Collection and Experimental Design, More Graphs and Displays (for instance refer sections from Text 2: 1.3 and 2.2)						
Referenc	es:						
1. Ad	lvanced	l engineering mathematics, 10/e, Erwin Kreyszig, Wil	ey, 2011				
		tion to Linear Algebra with Applications, Jim De	Franza	and Daniel			
Gagli	Gagliardi, Waveland Press, 2015.						
3. Ele	ementar	y Statistics, 13/e, Mario F. Triola, Pearson Education,	, 2018.				
4. Ele	ementar	ry Statistics, 8/e, Neil A. Weiss, Pearson Education, 20	012.				

Mapping	of COs	with	PSOs	and POs	:
---------	--------	------	-------------	---------	---

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	0	3	1	3	2	2	1	2
CO 2	3	0	3	1	3	2	3	1	2
CO 3	3	0	3	1	2	2	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT2FM106(1)						
Course Title	GRAPH THEORY AND LPP						
Type of Course	MDC						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit Lecture/Tutorial Practical Total						
	per week per week Hours						
	3	3	-	45			
Pre-requisites	Basic Arithmetic a	nd Geometry.					
Course	The course "Gra	ph Theory and Linear	Programming"	introduces			
Summary	fundamental conc	epts in graph theory fo	cusing initiall	y on graph			
	· • •	ties, and structures such as	e				
	· · ·	The discussion extends to tre		•			
		connectivity, emphasizing					
	-	roviding proofs for brevi	•	-			
		course employs graphical		-			
	-	optimization problems, pr		-			
		complex maximization ar		-			
		and nonstandard scenarios.	•	•			
		l exploration into graph	modellingmix	ture, matrix			
	representations, an	d connector problems.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Understand and apply the			Internal			
	fundamental concepts in			Exam/Assignment			
	graph theory.	U	C	/ Seminar/ Viva /			
				End Sem Exam			
CO2	Analyse properties of			Internal			
	graphs and trees.		_	Exam/Assignment			
		An P		/ Seminar/ Viva /			
				End Sem Exam			
CO3	Solve linear programming			Internal			
	problems by geometrically			Exam/Assignment			
	and Simplex method.	Ар	C	/ Seminar/ Viva /			
				End Sem Exam			
* - Ren	nember (R), Understand (U),	Apply (Ap), An	alyse (An), Evalua	te (E), Create (C)# -			
Factual	Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Knowl	edge (M)						

Texts:

1. John Clark & Derek Allan Holton, A First Look at Graph Theory: Allied Publishers, First Indian Reprint 1995.

2. Margaret L. Lial, Raymond N, Finite Mathematics and Calculus with Applications 9/e, Greenwell & Nathan P. Ritchey Pearson Education, Inc, ISBN 0-321-74908-1, 2012.

Module	Unit	Content	Hrs	Ext. Marks
			(36 +9)	(50)
Ι		Basics of Graph Theory		
		(from text 1)		
	1	Section 1.1 - Definition of a graph.		
	2	Section 1.3 - More definitions.	9	Min 10
	3	Section 1.4 - Vertex degrees.		
	4	Section 1.5 - Sub Graphs.		
	5	Section 1.6 - Paths and Cycles (Theorem 1.4 statement only).		
II		Basics of Graph Theory From Text 1		
	6	Section 2.1 - Definitions and Simple Properties of trees (Proof of Theorem 2.1, 2.2 and 2.4 omitted).		
	7	Section 2.2 - Bridges: up to and including Theorem 2.8 (Theorem 2.6 and 2.7 are statement only).		NT 10
	8	Section 2.2 - Bridges (Theorem 2.9 statement only) contd.	9	Min 10
	9	Section 2.3 - Spanning trees (Theorem 2.12 statement only).		
	10	Section 2.6 - Cut Vertices and Connectivity (Theorem 2.20 and Theorem 2.21 are statements only).		
III				
	11	From Text 2 11 Section 3.1 - Graphing Linear Inequalities.		
	12	Section 3.2 - Solving Linear Programming Problems Graphically; up to and including Example 2.	9	Min 10
	13	Section 3.2 - Solving Linear Programming Problems Graphically contd.		

	14	Section 3.3 - Applications of Linear Programming; up to and including Example 2.				
	15	Section 3.3 - Applications of Linear Programming contd.				
IV		Linear Programming - The Simplex Method (from text 2)				
	16	Section 4.1- Slack Variables and the Pivot.				
	17	Section 4.2- Maximization Problems.	9	Min 10		
	18	Section 4.3- Minimization Problems; Duality.				
	19	Section 4.4- Nonstandard Problems.				
V		Open Ended				
		ns as models, Matrix representation of graphs, Connector ems (for instance refer sections from 1.2, 1.7 and 2.4 of 1).	9			
Referenc	es:			I		
1. Int	1. Introduction to Graph Theory, 4th ed., R.J. Wilson, LPE, Pearson Education, 1996.					
2. Gr	2. Graph Theory with Applications, J.A. Bondy & U.S.R. Murty, North-Holland, 1982					
	3. Linear Programming: Foundations and Extensions, 2/e, Robert J. Vanderbei, Springer Science+Business Media LLC, 2001.					
4. An Introduction to Linear Programming and Game Theory (3/e), Paul R. Thie and G.						

E. Keough, John Wiley and Sons, 2008.

Mapping of COs wit	th PSOs and POs :
--------------------	-------------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	1	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1FM105(2)						
Course Title	MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART I						
Type of Course	MDC	MDC					
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	3	3	-	45			
Pre-requisites	Basic Arithmetic a	nd Computational Skill					
Course	The course is des	igned to equip students w	with essential a	arithmetic and			
Summary	problem-solving skills required for competitive exams. It covers topics						
	ranging from fundamental arithmetic operations such as number systems,						
	fractions, and roots	s to more advanced concept	ts like financia	l mathematics,			
	time-speed-distanc	e calculations, and problem	n-solving techn	iques			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Apply mathematical methods to solve problems	Ар	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Apply numerical skills in competitive examinations	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Manage time in competitive examinations.	С	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
- Factu	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)					

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
-		Fundamentals of Arithmetic		
I	1	Number System		
	2	Number Series		
	3	Simple and Decimal Fractions	9	Min 10
	4	HCF and LCM		
	5	Square root and Cube root		
II		Basic Arithmetic Operations		
	6	Simplification		
	7	Average		M: 10
	8	Ratio and Proportion	9	Min 10
	9	Problems based on ages		
	10	Percentage		
III		Financial Mathematics		
	11	Profit and Loss		
	12	Discount		Nf : 10
	13	Simple Interest	9	Min 10
	14	Compound Interest		
	15	Work and Time		
IV		Time, Speed, and Distance		
	16	Speed, Time and Distance		
	17	Problems based on trains	9	Min 10
	18	Boats and Streams		
	19	Clock and Calendar		

V	Open Ended	9					
	Mixture or Allegation, Partnership, Pipes and Cisterns						
Referenc	References: 1. Fast Track Objective Arithmetic, Rajesh Verma, Arihant Publications India						
limited, 2	limited, 2018 (Primary Reference).						
2. Objective Arithmetic for Competitive Examinations, Dinesh Khattar, Pearson Education, 2020.							
3. Quicke	3. Quicker Objective Arithmetic, Dr Lal, Jain, Upkar's publication, 2010.						

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	0	3	2	3	2	3	1	2
CO 2	2	0	3	1	3	2	3	1	2
CO 3	2	0	2	2	2	2	2	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Internal Exam Assignment		Viva	End Semester Examinations	
CO 1	~	✓	~	~	\checkmark	
CO 2	~	√	~	~	✓	
CO 3	~	√	~	~	\checkmark	

Programme	B. Sc. Mathematics	B. Sc. Mathematics Honours					
Course Code	MAT2FM106(2)	MAT2FM106(2)					
Course Title	MATHEMATICS	S FOR COMPETITIVE E	CXAMINATIO	ONS - PART II			
Type of Course	MDC						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	3	3	-	45			
Pre-requisites	Basic Arithmet	ic and Computational Skill					
Course	The course "Mathe	matics for Competitive Exa	minations - Pa	rt II" is designed			
Summary	to prepare students	to prepare students for competitive exams by focusing on various reasoning					
	and problem-solving skills. It covers a range of topics including non-verbal						
	reasoning, verbal r	easoning, spatial reasoning	g, and abstract	reasoning, each			
	module addressing	different aspects of these s	kill sets.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Apply mathematical methods to solve problems	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Understand the basic concepts of logical reasoning Skills	U	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Manage time in competitive examinations	С	М	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Module	Unit	Content	Hrs	Ex
			(36+	Marks
			9)	(50)
I	1	Non-Verbal Reasoning		
	2	Similarity of Pairs What come Next		
	3	Odd One out	9	Min 10
	4	Coding and Decoding		
	5	Ranking Test		
II		Reasoning Contd.		
	6	Blood relations		
	7	Blood relations Contd.	9	
	8	Direction Sense Test		Min 10
	9	Direction Sense Test contd.		
	10	Logical Venn Diagram		
III		Spatial Reasoning		
	11	Figure analogy		
	12	Figure series	9	Min 10
	13	Figure Classification		
	14	Mirror and Water Images		
	15	Counting of figures		
IV		Abstract Reasoning		
	16	Cube and Dice		
	17	Logical and Analytical Reasoning	9	Min 10
	18	Geometry mensuration		
	19	Data Interpretation		
V		Open Ended		

	Alphabet and Number Sequence Test, Paper folding and paper cutting	9			
Deferences					

References:

1. A Fast Track Course in MENTAL ABILITY, Amogh Goel, Arihant Publications India limited, 2016. (Primary Reference).

2. The Mental Ability, Logical Reasoning & Problem-Solving Compendium for IAS Prelims General Studies Paper 2 & State PSC Exams, Disha Experts, Disha Publications, 2018.3. The Pearson Guide to Verbal Ability and Logical Reasoning for the CAT, Nishit K. Sinha, Pearson Education, 2014.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	2	1	2	0	1	1	0
CO 2	2	0	2	1	2	0	1	1	0
CO 3	0	1	2	1	2	0	1	1	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	~	~	\checkmark
CO 2	✓	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

SKILL ENHANCEMENT COURSES

(SEC)

Programme	BSc Mathematics Honours					
Course Title	INTRODUCTION TO PYTHON AND SCIENTIFIC COMPUTING					
Type of Course	SEC – Double	Major				
Semester	IV					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	3	3	-	45		
Pre-requisites	calculus with an	•	ial and integral c			
Course Summary	calculus with an understanding of differential and integral calculus. (3) A basic course in matrix algebra (higher secondary level) This course introduces the fundamentals of Python with a focus towards mathematical programming. Getting started with Python, Various Interfaces, Variables, Modules, Loops, Lists, Tuples, Functions, Branching, Input and Output, Arrays and Plotting, Dictionaries and Strings and finally Classes and Object-Oriented Programming are introduced. Using the Python programming structure, an introduction to the advanced mathematics software SageMath is given in the last part of the course. Various practical problems making use of concepts from calculus and linear algebra are to be solved using the SageMath software in the open-ended practical part so that the students will come to know how to apply software to answer and compute typical problems from these subjects.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand Basics of Python Programming.	U	С	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam					
CO2	Intermediate Level Concepts such as Object- Oriented Programming.	An	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam					
CO3	Scientific Computation using SageMath.	Е	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam					
	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 								

Textbook		Introduction to Scientific Programming with Python, Joal SpringerBriefs on Computing, 2020, ISBN: 978-3-030-503 https://link.springer.com/book/10.1007/978-3-030-50356-7 Sage for Undergraduates, 2 nd Ed., Gregory V. Bard, 202 Mathematical Society, 2022. ISBN: 978-1470411114. 2014 Online Ed: http://www.people.vcu.edu/~clarson/t undergraduates-2014.pdf	56-7. Op 22, Amer	en Access: ican
Module	Unit	Content	Hrs	Marks
			(36+ 9)	Ext: 50
Ι		Python Basics		
		(Text 1, Ch. 1, 2, 3, 4.)		
	1	Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2).	8	
	2	Formatting Text Output. Importing Modules. (Sec 2.3, 2.4).	1	
	3	Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).		Min.10
	4	Iterating over a List with a for Loop Nested Lists and List Slicing. (Sec 3.4, 3.5).		
	5	Tuples. (Sec 3.6)		
II		Functions, Branching, I/O, Modules.		
	6	Programming with Functions Function Arguments and Local Variables. Default Arguments and Doc Strings. (Sec 4.1, 4.2, 4.3)		
	7	If Tests for Branching the Program Flow. Functions as arguments to Functions. (Sec 4.4, 4.5)		
	8	Solving Equations with Python Functions. (Sec 4.6)	1	Min 10
	9	Writing Test Functions to Verify Programs (Sec 4.7).	8	
	10	User Input and Error Handling. Reading Input User Data. Reading Data from Files. Writing Data to Files. (Sections 5.1, 5.3, 5.4. Section 5.2 omitted).	1	
	11	Handling Errors in Programs. (Sec 5.5)		

•

•

	12 Making Modules. (Sec 5.6)		
III	More Data Structures, Plotting (Text 1, Ch. 6, 7). 13 Arrays and Plotting. Numpy and Array Computing. Plotting Curves with Matplotlib. (Sec 6.1, 6.2) 14 Plotting Discontinuous and Piecewise Defined Functions. (Sec 6.3). 15 Dictionaries and Strings. Examples: A Dictionary for Polynomials, Reading File Data to a Dictionary. (Sec 7.1 7.2, 7.3),		Min 10
	16 String Manipulation (Sec 7.4).		
IV	Classes and Object-Oriented Programming. (Text 1, Ch. 9, 10.) 17 Basics of Classes. (Sec 8.1) 18 Protected Class Attributes, Special Methods. Example: Automatic Differentiation of Functions. (Sec 8.2, 8.3, 8.4). 19 Test Functions for Classes. Example: A Polynomial Class. (Sec 8.5, 8.6). 20 Class Hierarchies and Inheritance. Example: Classes for Numerical Differentiation, Integration.	7	Min 10

Practical (Open-Ended)

V

Lecturer's selections of 15 sessions of 2 hours each from below.

Miscellaneous Python Exercises

- 1. Pitfalls of Programming, Text 1, Section 2.5.
- Familiarize various Python runtime environments and IDEs like IDLE, Spyder, VS Code, Virtual Environments, Jupyter Notebook, Google Colab, Anaconda/Miniconda/Mamba, Replit.
- 3. Familiarize various documentation websites and how to refer to the syntax and implementation of a Python concept or Package.
- 4. Case studies from Reference 2:, Income Tax Calculator (page 38), Investment Report (p. 73), Approximating Square Roots. (p. 92), Text Analysis (p. 126), Generating Sentences (p. 150).

Sagemath

- 1. Getting and installing sagemath in Windows, Ubuntu OS Using sagemath using cocalc (online).
- 2. Using Sage as a Calculator, Using Sage with Common Functions, Using Sage for Trigonometry (Text 2, sections 1.1, 1.2, 1.3).
- 3. Using Sage to Manipulate Polynomials (Text 2, section 1.7)
- 4. Matrices and Sage-A First Taste of Matrices, Doing the RREF in Sage (Text 2, section 1.5)
- 5. Using Sage for 2-D graphs (Text 2, section 1.4)
- 6. The Derivative, Slope of Tangent, Higher-Order Derivatives (Text 2, section 1.11))
- 7. Antiderivatives (Indefinite Integral), Definite Integrals, Improper Integrals (Text 2, sec 1.12, upto sec 1.12.6))

Sympy (Reference 3).

- 1. Sympy Introductory Tutorial.
- 2. Solve an equation algebraically.
- 3. Solve a system of equations algebraically.
- 4. Solve one or a system of equations numerically.
- 5. Find the roots of a polynomial symbolically or numerically.
- 6. Solve a matrix equation algebraically.
- 7. Solve a Diophantine equation algebraically.
- 8. Solve an ODE algebraically.

More Numpy and Data Visualization (Reference 1: Chapter 3, 4)

- Numpy Functions: arange, linspace, zeros, ones, random.random, reshaping. (Sec 3.1.1 to 3.1.6). Copying, Saving and Restoring, Slicing, Arithmetic Operations. (Sec 3.1.7 to 3.1.10).
- 2. Matplotlib Module: 2D Plots, Polar Plots, Pie Charts, Multiple Plots. (Sec 4.1)
- 3. Sine function and friends, Circle, Parametric Plots, Error Bars. (Sec 4.2)

	 Simple 2D Animation (Reference 1, Section 4.4), Making a movie of a Plot (Text 1, Section 4.4) Famous Curves: Astroids, Ellipse, Spirals of Archimedes and Fermat (Reference 1, Sec 4.5) 2D Plots and Fractals (Reference 1, Section 4.6) 3D Plots (Reference 1, Section 4.7)
	Numerical methods using SageMath (Reference 5: Chapter 7)(7.1 - 7.10, 7.12)
	 Evaluate a Taylor series numerically. Interpolate a function using a) Newton's forward interpolation. b) Newton's backward interpolation. c) Lagrange's Interpolation. d) Newton's General Interpolation. Find integral of function using a. Trapezoidal Rule b. Simpson's 1/3-rule
	4) Find derivative of function numerically.
	 5) Solve first order differential equations numerically. a) Euler method b) Fourth order Runge-Kutta method 6) Solve algebraic equations numerically. a) The Bisection method b) Regula Falsi Method
References	

- 1. Python for Education, Ajith Kumar B. P., 2023 https://scischool.in/python/pythonForEducation.pdf
- 2. Fundamentals of Python First Programs, Kenneth A Lambert, 2 Ed., Cengage, 2018.
- 3. Sympy Tutorial: <u>https://docs.sympy.org/latest/tutorials/intro-tutorial/index.html</u> Solving Equations: <u>https://docs.sympy.org/latest/guides/solving/index.html</u>
- 4. Computational Mathematics with SageMath, Paul Zimmermann, Alexandre Casamayou, <u>https://www.sagemath.org/sagebook/english.html</u>
- 5. SageMath Advice For Calculus, Tuan A. Le and Hieu D. Nguyen, https://users.rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- 6. Sagemath Reference: <u>https://doc.sagemath.org/</u>

Programming Resources

- 1. Python official website: <u>https://www.python.org</u> Documentation: <u>https://docs.python.org/</u>
- 2. Spyder official website and documentation, <u>https://www.spyder-ide.org/</u>
- 3. MIT Courseware, Getting Started: Python and IDLE, <u>https://web.mit.edu/6.s189/www/handouts/GettingStarted.html</u>
- 4. Jupyter Notebook, <u>https://jupyter.org/</u>
- 5. Google Colaboratory (colab), <u>https://colab.google/</u>
- 6. Visual Studio Code: <u>https://code.visualstudio.com</u>, Documentation: <u>https://code.visualstudio.com/docs</u> VS Code for Web: https://vscode.dev/
- 7. Replit, <u>https://replit.com/</u>
- 8. Python Virtual Environments: https://docs.python.org/3/tutorial/venv.html
- Anaconda, Miniconda and Mamba. Anaconda: <u>https://docs.anaconda.com/free/anaconda/</u> Miniconda: <u>https://docs.anaconda.com/free/minicoda</u> Mamba: <u>https://mamba.readthedocs.io/en/latest/</u>
- 10. SageMathCloud at Cocalc: <u>https://cocalc.com</u> Documentation: <u>https://doc.cocalc.com/</u>

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	2	1	3	2	3	3	2	1	2
CO 2	3	3	2	2	3	2	3	3	2	1	2
CO 3	3	3	3	3	3	1	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

Internal Exam Assignment Seminar Viva End Semester Examinations CO 1 \checkmark \checkmark \checkmark \checkmark \checkmark CO₂ \checkmark \checkmark \checkmark \checkmark \checkmark CO 3 \checkmark \checkmark \checkmark \checkmark \checkmark

Assessment Rubrics:

Assignment/ Seminar

Internal Exam

Final Exam (70%)

Viva

Programme	B. Sc. Mathematics Honours								
Course Title	MATHEMATICAL TYPE SETTING SYSTEM - LATEX								
Course Code	MAT5FS112								
Type of Course	SEC (For Pathwa	SEC (For Pathways 1 – 4)							
Semester	V								
Academic Level	300-399								
Course Details	Credit Lecture/Tutorial		Practical	Total					
		per week	per week	Hours					
	3	3	-	45					
Pre-requisites	1. Fundamental Ma	thematics Concepts	•						
Course	The course will cov	ver topics such as documer	nt formatting, r	nathematical					
Summary	typesetting, graphics and tables, bibliography management, beamer								
	presentation and	understanding the Indian	n language tr	ransliteration					
	package for typeset	ting Sanskrit or Hindi or M	lalayalam usin	g LaTeX.					

CO	CO Statement	Cognitive	Knowledge	Evaluation						
		Level*	Category#	Tools used						
CO1	Preparing a LaTex document with title page including contents, references and index	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam						
CO2	To Display documents with bullets, numbering and aligning or ordering and adding rows and tables	Ар	С	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam						
CO3	Use mathematical typesetting and equation environments to create professional looking equations and mathematical notation	U	F	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam						
# - F	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

Textbook	Text 1: LATEX TUTORIAL, A PRIMER by Indian TEX Users Group, Edited by E. Krishnan, 2003. Text 2: George Gratzer, More Math Into LaTeX-Springer 2016 (5 th Edition),									
Module	Module Unit Content									
Ι		Getting Started with LaTeX (Text-1)								
	1	The basics- Tutorial I								
	2	The documents – Tutorial II	8	Min 10						
	3	Bibliographic Database- Tutorial III & IV								
	4	Table of contents and Index- Tutorial V(Omit glossary)								
II		Styling Pages								
	5	Displayed Text – Tutorial VI	6	Min 10						
	6	Rows and columns – Tutorial VII	0							
	7	Tables – Tutorial VII .2								
III		Typesetting Mathematics								
	8	Basic Mathematical equation- Tutorial VIII.1, VIII.2								
	9	Groups of Equations and numbering – Tutorial VIII.3								
	10	Matrices, dots, delimiters and affixing symbols- Tutorial VIII.4	10	Min 10						
	11	Operators, Equations, Symbols, notations, Greek letters etc. Tutorial VIII.5, VIII.6, VIII.7, VIII.8(In VIII.8 focus only on usual symbols, Greek letters, operations etc. commonly used in mathematics)								
IV		Theorems, figures, Cross references and								
		Presentation(Text-1 and 2)								
	12	Theorem in Latex – Tutorial IX.1								

	13	The AMS theorem package- Tutorial IX.2 (Omit IX.2.2, IX.2.3)	12	Min 10
	14	Boxes – Tutorial X (Section X.1 , X.2 Only)		
	15	Floating Images- Tutorial XI (Section XI.I.I, XI.I.2 and XI.I.5 Only)		
	16	16 Cross Reference – Tutorial XII (Section XII.1, XII.2 Only)		
	17 Footnotes- Tutorial XIII (Section XIII.1 Only)			
	18	Presentation – Text 2, Section 12.1 to 12.2.4		
	19	Presentation – Text 2, Section 12.2.6 to 12.2.9 (Omit 12.2.5 and 12.2.7)		
V		Open Ended	9	
	1	Installation of LaTeX		
	2	Familiarising Overleaf Platform		
	3	Write a chapter in a book that you are studying in any semester having mathematical symbol theorems and figures.		
	4	Create Slides with beamers and posters		
	5	Transliteration symbols with Illustrative examples of the Indian Languages, such as Sanskrit, Hindi (Devanagari) and Malayalam.		

References:

- Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LATEX 2ε (Online Link:- <u>The Not So Short Introduction to LaTeX</u> (oetiker.ch))
- 2) Harvey J. Greenberg, A simplified introduction to LaTeX (Online version)
- 3) Leslie Lamport (second edition. Addison Wiley,1994)- LaTeX, a Document Preparation System.
- 4) Donald Knuth (Addison-Wesley, 1984), The TeX book
- 5) Frank Mittelbach and Michel Goossens (second edition), Addison-Wesley, 2004).

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	0	1	1	2	2	1	0	2	3	0
CO 2	2	3	1	0	1	1	1	3	1	0	2	3	0
CO 3	3	2	1	0	1	1	2	1	1	0	2	2	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	✓	~	✓
CO 3	~	✓	~	~	✓

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours				
Course Code	MAT6FS113(1)					
Course Title	DATA SCIENCE WITH PYTHON					
Type of Course	SEC (for pathways 1 – 5)					
Semester	VI					
Academic Level	300 - 399					
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours	
	3	3	-	0	45	
Pre-requisites	A basic course in Python programming with the understanding of using looping, conditionals, creating variables, writing functions, and importing modules.					
Course Summary	Python. It will ena specific focus on h	This course is an advanced course for those who have learned the basics of Python. It will enable the students to learn more features of Python with a specific focus on how to use them to analyse data and arrive at conclusions in practical situations with the help of a reasonable knowledge of statistics.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Learn to rearrange and manipulate various data structures in Python to make it more meaningful	U	F	Internal Exam/ Assignments / End Semester Examination		
CO2	Understand fundamentals of Statistics from a real-life point of view	U	F	Internal Exam/ Assignments / Quiz / End Semester Examination		
CO3Learn how to visualise data for clearer understanding of practical situationsApCInternal Exam / Quiz / End Semester Examination						
	nember (R), Understand (U), Ap					

* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# -Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Note : Python IDLE (with necessary modules like pandas, scipy), Anaconda/Spyder package, Jupyter notebook interface or Google colab (free to use) interface, Pydroid 3 for android (along with Pydroid repository plugin) can be used for training purposes. Python version 3.10 or above should be used to avoid errors with some of the functionalities we discuss in the course.

Textbook	1 2	Publishing, 2015					
Module	Unit	Content	Hrs (36+ 9)	Ext. Marks (50)			
	Pyth	on Tools for Handling and Manipulating Data					
		(Text 2, Chapter 2)					
	1	Exceptions, Lists.					
_	2	Tuples, Dictionaries.	8				
Ι	3	Counters, Sets, List Comprehensions,		Min 10			
	4	Truthiness, Automated Testing and assert Iterables and Generators					
	5	Randomness, Regular Expressions, zip and Argument Unpacking					
	More	Tools for Data Handling – Numpy and Pandas	8	Min 10			
		(Text 1, Chapter 1)					
Π	6	6 NumPy: Mathematical operations, Array subtraction, squaring an array, A trigonometric function performed on the array, Conditional operations.					
	7	NumPy : Matrix multiplication, Indexing and slicing, Shape manipulation.					

	1	Making Sense of Data through Advanced Visualization - Controlling the line properties of a chart				
V						
		10				
	19	Studying the Titanic – with all the required analysis				
IV	18	What is data mining? Presenting an analysis.	8	Min 10		
		(Text 1, Chapter 3)				
		Applying the Theory to Problems				
	17	The chi-square distribution, Chi-square for the goodness of fit, The chi-square test of independence, ANOVA.				
	 15 Type 1 and Type 2 errors, confidence interval. 16 Correlation, Z-test vs T-test, The F distribution. 					
	14	A z-score, A p-value, One-tailed and two-tailed tests.				
	13	A Poisson distribution, A Bernoulli distribution.	12	Min 10		
	12	Various forms of distribution, A normal distribution, A normal distribution from a binomial distribution.	10			
		(Text 1, Chapter 2)				
		Inferential Statistics				
	11	Data operations: The left outer join, The full outer join, The groupby function				
	10Data operations: Aggregation operations, Joins, The inner join					
	9	Pandas : Filling the missing data, String operations, Merging data				
	8	Pandas : Inserting and exporting data, CSV, Data cleansing, Checking the missing data.				

	2	Using keyword arguments, Using the setter methods, Using the setp() command.
	3	Creating multiple plots, Playing with text, Styling your plots.
	4	Box plots, Heatmaps, Scatter plots with histograms.
	5	A scatter plot matrix, Area plots.
References	1 2 3 4 5 6 7 8 9 10	Thomas Nield, Essential Math for Data Science - Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics, O'Reilly Media, 2022 Wes McKinney, Python for Data Analysis_Data Wrangling with pandas, NumPy, and Jupyter-O'Reilly Media, Third Edition, 2022 Fabio Nelli, Python Data Analytics- With Pandas, NumPy, and Matplotlib, Apress, Second Edition, 2018 https://www.kaggle.com/datasets/yasserh/titanic-dataset https://www.w3schools.com/datascience/ds_python.asp https://realpython.com/python-for-data-analysis/ https://learn.microsoft.com/en-us/training/modules/explore- analyze-data-with-python/1-introduction https://onlinecourses.nptel.ac.in/noc24_cs54/preview https://onlinecourses.nptel.ac.in/noc20_cs46/preview

Note: For detailed understanding of the topics given in Module II, additional reference 1 can also be used, though it is not very essential.

Roadmap:

Being a practice-oriented course, the teachers may introduce the students to more problems so as to familiarize them with the tools in which they have been trained through this course. Many good examples on how to use these in real life situations can be found in Chapter 13 of additional reference 2 and the URLs provided in the additional references section.

Mapping of COs with PSOs and POs :

	PSO 1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	3	1	3	2	3	3	1	1	1
CO 2	3	2	3	2	3	2	1	1	1	1	1
CO 3	3	2	2	1	3	1	3	3	1	-	1

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Quiz	End Semester Examinations
CO 1	\checkmark	\checkmark		\checkmark
CO 2	\checkmark	\checkmark	\checkmark	\checkmark
CO 3	\checkmark		\checkmark	\checkmark

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Assignment
- Quiz
- End Semester Examinations

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT6FS113 (2	MAT6FS113 (2)					
Course Title	Scientific Prin	ciples & Prac	tice				
Type of Course	SEC (for path	ways 1 – 5)					
Semester	VI						
Academic	300 - 399						
Level							
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours		
		week	per week	per week			
	3	3	-	-	45		
Pre-requisites	High School science						
Course	This course familiarises students with the basic principles and						
Summary	phenomenology	y of science an	d scientific re	search.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Understand the scope,	U	С	Seminar				
	limitations, and			Presentation/				
	fundamental principles of			Group Tutorials				
	science and scientific							
	research.							
CO2	Appreciate the role of	U	М	Seminar				
	abstraction and critical			Presentation/				
	thinking in mathematics and			Group Tutorials				
	science, and how they							
	contribute to scientific							
	progress.							
CO3	Recognize the importance	U	С	Seminar				
	of proper experimental			Presentation/				
	design in conducting			Group Tutorials				
	effective scientific research.			-				
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Fa	ctual Knowledge(F) Conceptua	al Knowledge (C)	Procedural Knowl	edge (P)				
Metao	cognitive Knowledge (M)							

Text Book		cientific Endeavour – A Primer on Scientific Principle & Practice, 2 nd Ed e (2016).	1tion, J	enrey
Module		Hrs (36 +9)	Marks (50)	
Ι		The Philosophy of Science	9	Min10
	Chap	ter 1 - Introduction		1
	1	1.1: What is Science?		1
	2	1.2: Areas of Science		1
	3	1.3: Basic & Applied Research]
	4	1.4: Why Understand Science?]
	Chap	ter 2 - The Philosophy of Science]
	5	2.1: Scientific Statements]
	6	2.2: Scientific Methods		1
	7	2.3: Recent Development in the Philosophy of Science]
II		Scientific Research	9	Min10
	Chap	ter 3 – Research]
	8	3.1, 3.2: Selecting a Topic, Hypothesis]
	9	3.3: Experimental Design]
	10	3.4: Performing Experiments]
	11	3.5-3.8: Analysis, Results, Discussion, Models		1
	12		1	
	Chap		1	
	13	4.1: Scientific Norms]
	14	4.2-4.5: Invisible Colleges, Peer Review, Reward System, Becoming a		
III		Scientist Misconduct in Science & Critical Thinking	9	Min10
	Chap		1	
	15	5.1: Fraud		1
	16	5.2: Plagiarism		1
	17	5.3: Questionable Research Practices		1
	18	5.4: Research With Human & Animal Subjects		1
	19	5.5: Whistleblowing		1
	Chap	ter 6 – Critical Thinking & Science		1
	20	6.1: Critical Thinking Strategies		1
	21	6.2: Common Fallacies		
IV		Pseudoscience	9	Min10
	22	Chapter 7: 7.1-7.9: - Common Pseudosciences]
	23	8.1: Science & Pseudoscience]
	24	8.2: The Need for Critical Thinking]
	25	8.3: A Sceptical Attitude]
	26	8.4: Evaluating Extraordinary Claims]
	27	9.1: The Scientific Knowledge Acquisition Web]
	28	9.2: Conclusions]
V		Open Ended Module	9	
	1	Flatland: A Romance of Many Dimensions, Edwin Abbott Abbott, 1884.		

	2	Mr. Tompkins in Paperback, George Gamow, Cambridge University						
		Press, 1993.						
	3	The Character of Physical Law, Richard Feynman, MIT Press, 2017.						
Referen	ices:							
1.	Mathema	atics & The Laws of Nature, John Tabak.						
2.	The Scie	ntific Method: A Historical & philosophical Introduction, Barry Gower						
3.	History & philosophy of Science: A Reader, Daniel J. McKaughan & Holly VandeWall							
4.	A Historical Introduction to the Philosophy of Science, 4th Edition, John Losee							

- 5. A Summary of Scientific Method, Peter Kosso
- 6 The Nature of Physical Reality, Henry Margenau

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	2	3	2	3	2	3	2	3
CO 2	3	2	2	3	3	2	2	2	3	2	3
CO 3	2	1	3	2	3	2	3	2	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	~	~	~	\checkmark
CO 2	~	\checkmark	✓	~	✓
CO 3	√	✓	~	~	\checkmark

VALUE-ADDED COURSES

(VAC)

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours								
Course Code	MAT3FV109(MAT3FV109(1)								
Course Title	HISTORY OF MATHEMATICS									
Type of Course	VAC									
Semester	III									
Academic Level	el 200 - 299									
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours						
		per week	per week							
	3	3	-	45						
Pre-requisites	Aptitude for M	lathematics and its History.								
Course		bes into the philosophy of								
Summary		troversies in set theory ar								
	*	nd various philosophical al	Iternative appr	oaches to the						
	foundations of	mathematics.								

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Analyse Key Mathematical	An	С	Internal Exam/
	Theorems and Concepts from			Assignment/
	Ancient to Early Modern Times			Seminar/ Viva /
				End Sem Exam
CO2	Evaluate and Compare Methods of	Е	Р	Internal
	Addressing Infinity and Large			Exam/Assignme
	Cardinal Numbers			nt/ Seminar/ Viva
				/ End Sem Exam
CO3	Ensure students gain a	An	С	Internal
	comprehensive understanding of			Exam/Assignme
	the historical development and			nt/ Seminar/ Viva
	foundational concepts of			/ End Sem Exam
	mathematics			
* - Re	emember (R), Understand (U), Apply	(Ap), Analys	se (An), Evalua	ate (E), Create (C)
# -]	Factual Knowledge(F) Conceptual	Knowledge	(C) Procedura	l Knowledge (P)
Metac	ognitive Knowledge (M)			

Textbook	Mathematics & Its History, 3 rd Edition, John Stillwell, Springer (2010) ISBN: 978-1-4419-6052-8.							
Module	Unit	Content	Hrs (36+9)	Ext. Marks (50)				
Ι		Ancient Origins & Foundations						
	Quick	Review of Ancient Mathematics						
	1	Chapter 1: Pythagoras Theorem						
	2	Chapter 2: Greek Geometry						
	3	Chapter 3: Greek Number Theory						
	Infini	ty in Greek Mathematics – Chapter 4						
	4	Section 4.1, 4.2-Fear of Infinity, Eudoxus' Theory of Proportions	9	Min 10				
	5	Section – 4.3, 4.4-The Method of Exhaustion, Area of a Parabolic Segment						
	Sets &							
	6	Sections 24.1, 24.2, 24.4- Sets, Ordinals, Axiom of Choice & Large Cardinals						
	7	Section 24.3- Measure						
	8	Section 24.5-The Diagonal Argument						
	Biogra Archii							
II		Calculus – Chapter 9						
	9	Section 9.1, 9.2-What is Calculus, Early Results on Areas & Volumes	9	Min 10				
	10	Section 9.3-Maxima, Minima & Tangents						
	11	Section 9.4-The Arithemetica Infinitorum of Wallis						
	12	Section 9.5-Newton's Calculus of Series						
	13	Section 9.6-The Calculus of Leibnitz						

	Biogra	aphical Notes: Wallis, Newton & Leibnitz		
III		Algebraic Equations & Numbers		
	Polyn	omial Equations – Chapter 6		
	14			
	15	Section 6.3, 6.4 Quadratic Equations, Quadratic Irrationals		
	16	Section 6.5-The Solution of the Cubic	9	Min 10
	17	Section 6.6-Angle Division	-	
	18	Section 6.7-Higher Degree Equations		
	Biogra	aphical Notes: Tartaglia, Cardano & Viete		
	Comp	lex Numbers – Chapter 14		
	19	Section 14.1, 14.2, 14.3- Impossible Numbers, Quadratic & Cubic Equations		
	20	Section 14.4- Wallis' Attempt at Geometric Representation		
	21	Section 14.5, 14.6- The Fundamental Theorem of Algebra, The Proofs of d'Alembert & Gauss		
	Biogra	aphical Notes: d'Alembert		
IV		Topology – Chapter 22		
	22	Section 22.1, 22.2- Geometry & Topology, Polyhedron Formulas of Descartes & Euler		
	23	Section 22.3-The Classification of Surfaces		
	24	Section 22.4- Descartes & Gauss-Bonnet		
	25	Section Euler 22.5-Characteristic & Curvature	10	Min 10
	26	Section 22.7, 22.8- The Fundamental Group, The Poincare Conjecture		
	Biogra	aphical Notes: Poincare		
V		Open Ended Module	9	
	1	Hypercomplex Numbers – Chapter 20		

2	Number Theory in Asia – Chapter 5	
3	Mechanics – Chapter 13	
4	Complex Numbers & Functions – Chapter 16	
5	Non-Euclidean Geometry – Chapter 18	
6	Group Theory – Chapter 19	

References:

- 1. Mathematics, The Queen & Handmaiden of Sciences, E. T. Bell, McGraw Hill.
- 2. Men of Mathematics, E. T. Bell, Simon & Schuster, 1986.
- 3. What is Mathematics?, Richard Courant & Herbert Robbins,
- 4. History of Mathematics, 7th Edition, David M. Burton, McGraw Hill.
- 5. Mathematics In India, Kim Plofker, Princeton University Press, 2009.

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours					
Course Code	MAT3FV109(2)					
Course Title	COMPUTATION	AL LOGIC				
Type of Course	VAC					
Semester	III					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial	Practical	Total		
		per week	per week	Hours		
	3	3	-	45		
Pre-requisites	Nil					
Course	The course will cover the basics of propositional and predicate logic,					
Summary	Compactness, and	the Resolution Theory.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Determine the Satisfiability of a	Ap	С	Internal				
	Propositional Formula Set.			Exam/Assignment				
				/ Seminar/ Viva /				
				End Sem Exam				
CO2	Analyse Theorems of	Ар	С	Internal				
	Propositional Logic			Exam/Assignment				
				/ Seminar/ Viva /				
				End Sem Exam				
CO5	Remember Proofs of Major	An	М	Internal				
	Theorems of Logic			Exam/Assignment				
				/ Seminar/ Viva /				
				End Sem Exam				
* - Rem	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)								
Metacog	nitive Knowledge (M)							

Detailed Syllabus:

Text book	Logic	for Computer Scientists, U. Schoning, Birkhauser, 20)08 (Repr	int).
Module	Unit	Content	Hrs (45 = 36 +9)	Ext. Marks (50)
Ι	Propo	sitional Logic (Chapter 1 of Text Book).		
	1	Syntax and Semantics, Truth Tables, Satisfiability and Validity.		
	2	Equivalence and Normal Forms, Substitution Theorem	10	Min 10
	3	DNF and CNF forms		
	4	Horn Formulas,		
	5	Compactness Theorem for Propositional Calculus		
	6	Resolution Theorem and Resolution Algorithm		
		ction on Mathematical Theories of Section 2.3		
	7 Syntax of Predicate Logic			
	8	Semantics - Structures and Models, Satisfiability and Validity	9	Min 1(
	9	Equivalence of formulas - Substitution, Variable Renaming.		
	10	Skolem Normal Form		
	11	Mathematical Theories - Axioms and Models.		
III	Herbr	and Theory for Predicate Logic: Section 2.4		
	12	Herbrand Universe and Structures		
	13	Herbrand Model and Satisfiability Theorem		
	14 Skolem Lowenheim Theorem		9	Min 10
	15			
	16	Compactness and Herbrand's Theorem		
IV	Resolu	ition for Predicate Logic: Section 2.5		
	17	Ground Resolution and Resolvants	8	Min 1(
	1/			

	18	Ground Resolution Theorem					
	19	Robinson's Unification Theorem and Algorithm					
	20	Lifting Lemma					
	21	Resolution Theorem for Predicate Logic					
V	Logic	Programming					
	1	Unsolvability of Predicate Logic (Section 2.3 on Text Book)	9				
	2 SLD Resolution (Section 2.6 of Text Book)						
	3	Introduction to Logic Programming					
	4	Horn Clause Programs					
	5	Evaluation Strategies for Horn Clause Programs.					
Reference	References:						
	1. J. H. Gallier, Logic for Computer Science - Foundations of Automatic Theorem Proving, Dower, 2015.						
	U,	, M Clarke, Logic for Computer Science, Addition Wesle	ey, 1990.	coding			

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours						
Course Code	MAT4FV110(1)							
Course Title	STATISTICS AND	STATISTICS AND MATHEMATICS WITH R						
Type of Course	VAC							
Semester	IV							
Academic Level	200-299	200-299						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
	per week per week							
	3	3	-	45				
Pre-requisites Course		g Experience Mathematics with R" cou	•	<u>^</u>				
Summary	understanding of R programming for statistical analysis and mathematical computation. The curriculum begins with an introduction to R, covering basic features, data storage, and manipulation techniques. Subsequent modules explore graphical visualization, programming constructs such as flow control and functions, and computational linear algebra. Each unit offers hands-on exercises and references to relevant sections in the textbook by Braun and Murdoch, supplemented by further reading materials for deeper exploration. This course helps students with practical skills in utilizing R for statistical analysis and mathematical modeling.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Demonstrate Proficiency in	Ap	Р	Internal Exam/			
	Basic and Intermediate R			Seminar/Assignment			
	Programming			/ End Sem Exam			
CO2	Create and Interpret Various	С	С	Internal Exam/			
	Types of Graphs Using R			Seminar/Assignment			
				/ End Sem Exam			
CO3	Apply Advanced Mathematical	Ap	Р	Internal Exam/			
	and Statistical Functions in R			Seminar/Assignment			
				/ End Sem Exam			
* - Rem	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Fact	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Knowle	edge (M)						
J	• • •						

т

Г

Textbook	A Einst	Commo in Statistical Decommonian with	D W Joh	- Duaun and Dunsan					
	A First Course in Statistical Programming with R, , W. John Braun and Duncan J. Murdoch, Cambridge University Press, 3 rd Ed., 2021, ISBN 978-1-108-99514-6.								
		g,g,,							
Module	Unit	Content	Hrs	External Marks					
			(36+9)	(50)					
Ι		Introduction to R							
	1	R Studio. R Command Line. R as							
		calculator. Named Storage. Quitting R.							
	2	Basic Features of R.							
	3	Vectors in R.	12	Min 10					
	4	Data Storage in R. Packages,							
	5	Libraries and Repositories.							
	6 Getting Help. Useful Features of R.								
	7 Data Frames, tibbles, and lists								
	8	Data Input and Output							
	Referen	ce: Chapter 2, Sections 1 to 10							
II		Graphics with R							
	9	Bar Charts and Dot Charts. Pie Charts.							
	10	Histograms. Box Plots. Scatter Plots.	4	Min 10					
	11	Plotting from Data Frames. Quantiles. QQ Plots.							
	Referen	ice: Section 3.1.							
III		Programming in R							
	12	Flow Control. For Loop. Examples 4.1 to 4.4.							
	13	If Statement. Examples.	12						
	14	Eratosthenes Sieve.	13	Min 10					
	15	While Loop. Examples. Newton's Method.							

٦

	16	Repeat loop. Break and Next Statements. Examples and Exercises.						
	17	Functions.						
	18	General Programming Guidelines						
	Referen	nce: Chapter 4, Sections 1-4.						
IV		Computational Linear Algebra						
	21	Vectors and Matrices in R						
	12Matrix Multiplication and Inversion7		7	Min 10				
	19	Eigenvalues and Eigenvectors						
	20	Singular Value Decomposition						
	Referen	nce: Sections 7.1, 7.2, 7.3, 7.4.1.						
V		OPEN ENDED	9					
	Sugges	tions:						
	Section	3.2 - 3.4: Higher Level Graphics with ggplo	ot					
	Section	4.6: Debugging and Maintenance						
	Section	4.7: Efficient Algorithms.						
	Section	6.1: Monte Carlo, 6.2: Pseudo-Random Nu	mbers					
	Append	lix A: Overview of Random Variables and I	Distributions					
	Section	6.3: Simulation of Random Variables						
	Section	8.3: Newton-Raphson						
	Section	8.5: Linear Programming						
Reference	978136 2. Gar 144935 3. Ruril	 Section 8.5: Linear Programming Roger D. Peng, R Programming for Data Science, LeanPub, 2022, ISBN 9781365056826. <u>https://bookdown.org/rdpeng/rprogdatascience/</u> Garrett Grolemund, Hands-On Programming with R, O'Reilly, 2014, ISBN 1449359019. https://rstudio-education.github.io/hopr/ Ruriko Yoshida, Linear Algebra and its Applications in R, Chapman and Hall, 2021, ISBN 9780367486846 						

Mapping of	COs with	PSOs and	POs :
------------	----------	-----------------	-------

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	2	2	2	2	2	1
CO 2	2	3	1	0	2	2	2	2	2	1	1
CO 3	1	1	3	2	2	2	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	√	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathem	atics Honours						
Course Code	MAT4FV110	(2)						
Course Title	THE MATHE	EMATICAL PRACTICES	OF MEDIEVA	L KERALA				
Type of Course	VAC							
Semester	IV	IV						
Academic Level	200 - 299	200 - 299						
Course Details	Credit	Credit Lecture/Tutorial Practic						
		per week	per week					
	3	3	-	45				
Pre-requisites	Mathematical	 Fundamental Mathematics Concepts: Number system, Basic Mathematical operations, Plane Geometry. Convergence of series of numbers and functions. 						
Course Summary		niliarises students with the tr e Medieval Kerala School of						

СО	CO Statement	Cognitiv e Level*	Knowledge Category#	Evaluation Tools used			
CO1	Uncover the underlying fundamental principles of the traditional mathematics practised in medieval Kerala.	U	C	Seminar Presentation/ Group Tutorials			
CO2	Appreciate the role of thought process and working rules in mathematics.	U	С	Seminar Presentation/ Group Tutorials			
CO3	Appreciate the usage of infinite series in mathematical analysis.	U	С	Seminar Presentation/ Group Tutorials			
# -]	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Text Book		 Lilavati of Bhaskaracarya Translated by K.S.Patwardhan, S.A.S.L.Singh, Motilal Banarsidass Publishers, Delhi. 2006. Ganita Yukti Bhasa of Jyesthadeva. Volume I. English Trans K.V.Sarma with explanatory notes by K.Ramasubramanian, N and M.S.Sriram. Hindustan Book Company, 2008. 	lation by	7	
Module	Unit	Content	Hours (36 +9)	Ext. Marks (50)	
Ι	Meas	urement of sides and areas of triangles, quadrilaterals and circles.	9	14	
	1	Computation of sides of a right triangle when one side is given.			
	2	Computation of area of triangles and quadrilaterals.			
	3	Computation of the perpendicular below the intersection of			
		diagonals.			
	4	Approximating the surface area and volume of spheres.			
	5	Computation of sides of polygons inscribed in a circle.			
	6	Computation of the arcs and chords of circles.			
		ter 28 from Text I (Treatment based on English translations of Sanskrit s in Lilavati).			
	verse	s in Liiavau).			
II	R	ules concerned with Solids, Shadow of Gnomon and Pulverizer.	9	12	
	7	Volume of Solids			
	8	Volume of a heap of Grain			
	9	Shadows of Gnomon.			
	10	Pulverization			
	-	ters 29, 30, 31, 32 and 33 from Text I (Treatment based on English ations of Sanskrit verses in Lilavati).			
III		Circle and Circumference as in Yuktibhasa.	10	14	
	11	Circumference of a circle approximated by regular polygons.			
	12	Circumference of a circle without calculating square roots.			
	13			1	
		Circumference of a circle in terms of the hypotenuses.			
	14	Summation of Series.			
	14 15	Summation of Series. Calculation of circumference.			
	14 15 16	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc.			
	14 15 16	Summation of Series. Calculation of circumference.			
IV	14 15 16	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc.	8	10	
IV	14 15 16	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc. ons 6.1 to 6.6 of Chapter 6 from Text II.	8	10	
IV	14 15 16 Sectio	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc. ons 6.1 to 6.6 of Chapter 6 from Text II. Sine and Cosine series as in Yuktibhasa.	8	10	
IV	14 15 16 Section 17	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc. ons 6.1 to 6.6 of Chapter 6 from Text II. Sine and Cosine series as in Yuktibhasa. Some technical terms and derivation of Rsines. Computation of Rsines. Computation of Jya and Sara by sankalita and accurate	8	10	
IV	14 15 16 Section 17 18 19	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc. ons 6.1 to 6.6 of Chapter 6 from Text II. Sine and Cosine series as in Yuktibhasa. Some technical terms and derivation of Rsines. Computation of Rsines. Computation of Jya and Sara by sankalita and accurate circumference.	8	10	
IV	14 15 16 Section 17 18 19	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc. ons 6.1 to 6.6 of Chapter 6 from Text II. Sine and Cosine series as in Yuktibhasa. Some technical terms and derivation of Rsines. Computation of Rsines. Computation of Jya and Sara by sankalita and accurate	8	10	
	14 15 16 Section 17 18 19 Section	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc. ons 6.1 to 6.6 of Chapter 6 from Text II. Sine and Cosine series as in Yuktibhasa. Some technical terms and derivation of Rsines. Computation of Rsines. Computation of Jya and Sara by sankalita and accurate circumference. ons 7.1 to 7.6 of Chapter 7 from Text II.		10	
IV V (Open	14 15 16 Section 17 18 19 Section	Summation of Series. Calculation of circumference. Conversion of the Rsine to Arc. ons 6.1 to 6.6 of Chapter 6 from Text II. Sine and Cosine series as in Yuktibhasa. Some technical terms and derivation of Rsines. Computation of Rsines. Computation of Jya and Sara by sankalita and accurate circumference.	8	10	

21	Decoding of important Sanskrit verses discussed in Modules III and IV from Yuktibhasa (Text II).			
22	Conversion of selected Rules discussed in Modules I to IV into			
	Computer Algorithms.			
Relevant Topics from Text I, Text II and References.				

References:

- 1. The Mathematics of India Concepts, Methods, Connections. P.P.Divakaran, Hindustan Book Agency, New Delhi, 2018.
- 2. A Passage to Infinity Medieval Indian Mathematics from Kerala and its Impact. George Ghevarghese Joseph, Sage Publications, New Delhi, 2009.
- 3. On an Untapped Source of Medieval Keralese Mathematics. C.T.Rajagopal and M.S.Rangachari, Archive for the History of Exact Sciences, 35 (2), (1986), 91 99.
- 4. Yukthibhasha. Rama Varma Maru Thampuran and A.R.Akhileswara Iyer (Editors)}, Mangalodayam Press, Trichur 1948.
- 5. Tantrasangraha of Nilakantha Somayaji with Yuktidipika and Laghuvivrti of Sankara. K.V.Sarma, Vishveshvaranand Visva Bandhu Institute of Sanskrit and Indological Studies, Punjab University, Hoshiarpur 1977.
- 6. Colebrook's translation of the Lilavati with Notes by Haran Chandra Banerji. The Book Company, Calcutta, 1927.
- 7. Mathematical Treasures Lilavati of Bhaskara. Frank J.Swetz and Victor J.Katz. Loci. 2011.

Mapping of COs with PSOs and POs :

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	2	1	0	2	3	0
CO 2	2	3	1	2	2	3	1	0	2	3	0
CO 3	2	2	2	2	2	1	1	0	2	2	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	✓	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	\checkmark

VOCATIONAL MINORS

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1VN101	MAT1VN101					
Course Title	PYTHON PRO	OGRAMMING					
Type of Course	Vocational Mi	nor – Introduction to AI					
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4 3 2 75						
Pre-requisites	Basic Logic						
Course	Course aims to provide basic programming skills in Python and Python						
Summary	libraries like N	umPy etc.					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools				
CO1	Understand the basics of Python	U	С	Internal				
	Data structures and			Exam/Assignment/				
	Programming constructs			Seminar/ Viva / End				
				Sem Exam				
CO2	Understand the basics of Python	U	Р	Internal				
	Programming constructs			Exam/Assignment/				
				Seminar/ Viva / End				
				Sem Exam				
CO3	Apply Python Libraries for Data	Ap	Р	Internal				
	Science and Machine Learning			Exam/Assignment/				
				Seminar/ Viva / End				
				Sem Exam				
* - Rei	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
# - F	^t - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metaco	gnitive Knowledge (M)							

Module	Unit	Content	Hrs (45+	Ext. Marks
			30)	(70)
		Data Types and Data Structures		
	1	Introduction to Python: - using the Python interpreter, Overview of programming in Python		
1	2	Expressions and Variables-String Operations.		
	3	Python Data Structures: lists & Tuple –Sets - Dictionaries	10	Min.15
	4	Programming Fundamentals: Conditions and Branching- Loops		
	5	Functions: formal arguments, variable-length arguments		
		Classes, files and modules		
	6	Introduction to Classes and Objects: -classes, class attributes, instances, instance attributes		
II	7	Binding and method invocation, inheritance, polymorphism,	12	Min.15
	8	Built-in functions for classes and instances.	12	MIII.15
	9	Files and input/output, reading and writing files		
	10	Methods of file objects, using standard library functions		
	11	Exception Handling		
		Introduction to Data Science using Python		
	12	Python libraries: Numpy- Scikit- Pandas.		
ш	13	Importing Datasets: Importing and Exporting Data in Python, Basic Insights from Datasets		
	14	Data cleansing and pre-processing: Identify and Handle Missing Values	12	Min.15
	15	Descriptive Statistics		
	16	ANOVA Correlation		

	17	Dealing with Outliers		
		Data Visualization Packages - Matplotlib and Seaborn		
IV	18	Overview of data visualization concepts		
	19 Introduction to Matplotlib and Seaborn		11	Min.15
	20	Basic Plotting and Customization with Matplotlib		
	21	Basic Plotting and Statistical Visualization with Seaborn		
	22	Other Visualization Libraries – Case Studies		
		Practical's	30	
	1	a) Write a program to calculate compound interest when principal, rate and number of periods are given		
	b) Read name, address, email and phone number of a person through keyboard and print the details			
	2	Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)		
	3	a) Print the below triangle using for loop.		
		5		
		4 4		
		3 3 3		
		2 2 2 2 2		
		11111		
	b) Python Program to Print the Fibonacci sequence using while loop			
	4	Python program to print all prime numbers in a given interval (use break)		
	5	Write a function called GCD that takes parameters a and b and returns their greatest common divisor		

6	Write a function called palindrome that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built- in function len to check the length of a string		
7	Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas		
8	Write a python program that defines a matrix and prints		
9	Write a python program to perform addition of two square matrices		
10	Python program to perform read and write operations on a file.		
11	Use the structure of exception handling all general- purpose exceptions		
12	Write a Python program that calculates basic statistics measures using NumPy		
13	Create a CSV file named sales_data.csv, which contains sales data for a company. The file has the following columns: Date, Product, Units Sold, and Revenue. Write a Python program using Pandas to perform the following tasks: a) Read the data from the CSV file into a DataFrame.		
	b) Calculate the total revenue generated by each product.		
	c) Determine the total units sold for each product.		
	d) Find the date with the highest revenue.		
	e) Plot a bar chart showing the total revenue generated by each product.		

	14	Create a CSV file named student_grades.csv, which contains the grades of students in different subjects. The file has the following columns: Student_ID, Maths, Science, English, and History. Write a Python program using Matplotlib to perform the following tasks: a) Read the data from the CSV file into a DataFrame. b) Calculate the average score for each subject. c) Plot a bar chart showing the average scores for each subject. d) Plot a histogram showing the distribution of scores in Maths.
	15	 Visualizing Titanic Dataset You are given a dataset containing information about passengers on the Titanic, including their survival status, age, sex, class, and fare. Write a Python program using Seaborn to perform the following tasks: a) Load the Titanic dataset into a DataFrame. b) Plot a count plot to visualize the number of passengers in each class. c) Plot a bar plot to visualize the survival rate of passengers based on their class and sex. d) Plot a heatmap to visualize the correlation matrix of numerical features (e.g., age, fare, and survival status).
Reference		
1 C	ra Duth	on Programming by Wesley I Chun 2nd Edition Dearson Education

- 1. Core Python Programming by Wesley J. Chun, 2nd Edition, Pearson Education.
- 2. An Introduction to Python by Guido Van Russom, Fred L.Drake, Network Theory Limited.
- 3. Python for Data Science, Dr. Mohd. Abdul Hameed, Wiley Publications 1st Ed. 2021
- 4. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 5. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython ,2nd edition, Wes McKinney, O'Reilly Media (2017)

Note: Proofs of all the results are exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	2	1	2
CO 2	2	1	3	1	3	3	2	1	2
CO 3	3	2	3	2	3	3	3	1	3

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	√	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathemati	BSc Mathematics Honours						
Course Code	MAT2VN101	MAT2VN101						
Course Title	LINEAR ALG	EBRA FOR MACHINE	LEARNING					
Type of Course	Vocational Mi	nor – Introduction to AI						
Semester	II							
Academic Level	100-199	100-199						
Course Details	ourse Details Credit Lecture/Tutorial		Practical	Total Hours				
		per week	per week					
	4	3	3 2					
Pre-requisites	Foundations in	Foundations in Mathematics						
Course Summary	Course aims t	Course aims to provide basics of linear algebra which is useful in						
	understanding r	understanding machine learning problems						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Solve system of linear	Ap	C	Internal Exam/Assignment/				
	equations			Seminar/ Viva / End Sem Exam				
CO2	Apply vector spaces and its	Ap	С	Internal Exam/Assignment/				
	properties			Seminar/ Viva / End Sem Exam				
CO3	Understand basics of matrix	U	C	Internal Exam/Assignment/				
	algebra and its applications			Seminar/ Viva / End Sem Exam				
* - Reme	- Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
⁴ - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive								
Knowledge	e (M)							

Textbook	Introduction to Linear Algebra" by Gilbert Strang, Wellesley-Cambridge Press, 2016, ISBN: 978-0980232776					
Module	Unit	Content	Hrs (45+ 30)	Marks (70)		
Ι		Solving Linear Equations				
	1	Vectors and Linear Equation				
	2	The Idea of Elimination				
	3	Elimination Using Matrices	12	Min.15		
	4	Rules for Matrix Operations				
	5	Inverse Matrices				
	6	Elimination = Factorization: A = L U				
	7	Transposes and Permutations				
II		Vector Spaces and Subspaces				
	8	Spaces of Vectors				
	9	The Nullspace of A: Solving $Ax = 0$	10	Nr: 17		
	10	The Rank and the Row Reduced Form	12	Min.15		
	11	The Complete Solution to $Ax = b$				
	12	Independence, Basis and Dimension				
	13	Dimensions of the Four Subspaces				
III		Orthogonality				
	14	Orthogonality of the Four Subspaces	8	Min.15		
	15	Projections				
	16	Least Squares Approximations				
	17	Orthogonal Bases and Gram-Schmidt				
IV		Eigenvalues and Eigenvectors				
	18	Introduction to Eigenvalues				
	19	Diagonalizing a Matrix	13	Min.15		
	20	Symmetric Matrices				

21	Positive Definite Matrices	
22	Similar Matrices	
23	Singular Value Decomposition (SVD)	
	Practical using Python	30
1	Write Python function for vector operations: addition, scalar multiplication, norm,	
2	Write Python function for matrix operations: addition, multiplication, inverse, transpose	
3	Implement a Python function to solve a system of linear equations using NumPy's linear algebra module.	
4	Implement matrix factorization techniques such as LU decomposition in Python using NumPy	
5	Write a Python function to check if a set of vectors forms a vector space. And to determine if a set of vectors forms a subspace of a given vector space.	
6	Write a Python function to find the basis of the column space, null space of a matrix, to calculate the rank, dimension of a matrix using NumPy,	
7	Write a function to determine if a set of vectors is linearly independent, to find the span of a set of vectors. and to check if a set of vectors forms a basis for a given vector space.	
8	Create a function to determine if two given vectors are orthogonal to each other and to calculate the projection of one vector onto another vector.	
9	Use orthogonalization to find the least squares approximation of a vector that does not lie in the span of a given set of vectors.	
10	Implement the Gram-Schmidt process in Python to orthogonalize a given set of vectors and to orthogonalize columns of a given matrix	
11	Implement a function to perform a change of basis operation on a given vector.	
12	Write a Python script to verify the rank-nullity theorem by computing the rank and nullity of a matrix and	

	comparing with the dimensions of its domain and codomain.	
13	Write a Python function to compute the eigenvalues and eigenvectors of a square matrix using SciPy.	
14	Write a Python function to check if a given square matrix is diagonalizable, to diagonalize a matrix using its eigenvectors and eigenvalues.	
15	Write a Python function to compute the singular value decomposition of a matrix using NumPy, Use Singular Value Decomposition (SVD) to find the rank and dimension of a matrix, and discuss how it can be used for dimensionality reduction.	
	Reference	
1	"Linear Algebra and Its Applications" by David C. Lay, Steven R. Lay, and Judi J. McDonald, Pearson, 2020,ISBN: 978-0134860244	
2	Linear Algebra: Concepts and Applications" by Charles R. Johnson and Dean E. Riess, Wiley, 2017,ISBN: 978- 1118612596	
3	Linear Algebra: A Modern Introduction" by David Poole, Cengage Learning, 2016, ISBN: 978- 1305658004	
4	Linear Algebra for Machine Learning" by Jason Brownlee, Machine Learning Mastery, 2021	
5	Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib" by Robert Johansson, Apress, 2018, ISBN: 978-1484242452	

Note: Proofs of all the results are exempted for the end semester exam.

Mapping	of COs	with	PSOs	and POs	:
---------	--------	------	-------------	---------	---

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	1
CO 2	3	2	3	1	2	2	3	1	1
CO 3	3	3	3	1	2	2	3	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathematics Honours				
Course Code	MAT3VN201				
Course Title	INTRODUCT	TION TO MACHINE LEA	RNING		
Type of Course	Vocational Mi	nor – Introduction to AI			
Semester	III				
Academic Level	200-299				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	4	3	2	75	
Pre-requisites	Minor 1, Minor 2 (Code)				
Course	Course aims to provide basic concepts of machine learning including				
Summary	paradigms of s	upervised, unsupervised and	l reinforcement	learning.	

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used			
		Level*	Category#				
CO1	Machine Learning concepts	U	С	Internal Exam/Assignment/			
	and basic parameter			Seminar/ Viva / End Sem			
	estimation methods.			Exam			
CO2	Distinguish between	U	С	Internal Exam/Assignment/			
	Supervised, Unsupervised			Seminar/ Viva / End Sem			
	and semi supervised			Exam			
	learning and evaluate the						
	performance measures						
CO3	Apply the algorithms	Ар	Р	Internal Exam/Assignment/			
	identifying problem			Seminar/ Viva / End Sem			
	situations			Exam			
* - Ren	nember (R), Understand (U),	Apply (Ap), Analyse (A	An), Evaluate (E), Create (C)			
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)						
Metacog	gnitive Knowledge (M)						

Module	Unit	Content		Ext.
			(45	Marks
			+30)	(70)
		Introduction to Machine Learning		
	1	Introduction: Machine Learning - Machine Learning Foundations		
Ι	2	Machine Learning Paradigms- Supervised, Unsupervised, Reinforcement	10	Min.15
	3	Applications of Machine Learning, Case studies		
	4 Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum a posteriori Estimation (MAP).			
	5	Introduction to Bayesian formulation.		
		Supervised Learning & SVM		
	6	Regression – Simple Linear regression and Multiple Linear Regression		
	7	Gradient Descent algorithm and Matrix method, Overfitting in regression.		
II	8	Methods for Classification- Logistic regression, Naive Bayes, Decision tree algorithm- ID3	14	Min.15
	9	SVM - Introduction, Maximum Margin Classification, Mathematics behind Maximum Margin Classification		
	10	Maximum Margin linear separators, soft margin SVM classifier, non-linear SVM		
	11	Kernels for learning non-linear functions, polynomial kernel, Radial Basis Function (RBF)		
		Performance Measures & Unsupervised Learning		
	12	Regression Evaluation Metrics – Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (Coefficient of Determination)		

III	13	Classification Evaluation Metrics - Precision, Recall, Accuracy, F-Measure, Receiver Operating Characteristic Curve (ROC), Area Under Curve (AUC)	11	Min.15
	14	Bootstrapping, Cross Validation, Ensemble methods, Bias-Variance decomposition.		
	15	Clustering - Similarity measures, Hierarchical Agglomerative Clustering, K-means partitional clustering		
	16	Expectation maximization (EM) for soft clustering		
	17	Dimensionality reduction –Principal Component Analysis, t-Distributed Stochastic Neighbour Embedding (t-SNE)		
		Introduction to Advanced Machine Learning		
	18	Introduction to Reinforcement Learning, Learning Task		
IV	19	Learning Models for Reinforcement – (Markov Decision process, Q Learning - Q Learning function, Q Learning Algorithm), Application of Reinforcement Learning		
	20	Introduction to Neural Network, Perceptron, Multilayer feed forward network,	10	Min.15
	21	Activation functions (Sigmoid, ReLU, Tanh), Back - propagation algorithm.		
	22	Case Study: Applying Reinforcement Learning in Autonomous Vehicle Navigation Case Study: Predicting Customer Churn in Telecommunications Industry using Neural Networks		
		Practical's	30	
	1	Create a dataset containing measurements of the heights of students in a class. Estimate the parameters of a normal distribution that best describes the distribution of heights using Maximum Likelihood Estimation (MLE)		

2	The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result	
3	Implement Simple Linear regression using python	
4	Implement Multiple Linear regression using python	
5	Implement the Logistic regression algorithm	
6	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets	
7	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	
8	Create a dataset containing information about the prices of houses in a certain city. The dataset includes various features such as the size of the house, number of bedrooms, location, and age of the house, as well as the corresponding sale prices. Your task is to build a regression model to predict the sale price of houses based on their features and evaluate the model's performance using appropriate evaluation metrics (MAE, MSE, RMSE, R-squared)	
9	Implement the support vector machine algorithm	
10	Create a dataset containing information about customers of a telecommunications company. The dataset includes features such as customer demographics, service usage, and contract details, as well as a binary target variable indicating whether each customer churned (1) or not (0). Your task is to build a classification model to predict customer churn based on the available features. Evaluate the trained model's performance on the testing data using the following evaluation metrics: Accuracy, Precision, Recall, F1- score and ROC Curve. Use SVM Classification	
11	Program to implement K-Means clustering Algorithm	

	12	Create dataset containing information about customers of a retail store, including features such as age, income, and spending score. Your task is to perform clustering on the dataset to identify distinct groups of customers based on their purchasing behaviour. Use K-means Algorithm		
	13	Implement Dimensionality reduction using Principal Component Analysis (PCA) method		
	14	Implementing a simple reinforcement learning algorithm		
	15	Create a dataset containing information about patients with diabetes, including features such as age, BMI, blood pressure, and glucose levels, as well as an indication of whether each patient has diabetes or not. Your task is to build a simple neural network classifier to predict whether a patient has diabetes based on their features		
		References		
	1.	M. Gopal, "Applied Machine Learning", McGraw Hill Education		
	2.	Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013		
	3.	Machine Learning: A Probabilistic Perspective by Kevin P. Murphy		
	4.	Ethem Alpaydin, Introduction to Machine Learning, 2nd edition, MIT Press 2010.		

Note: Proofs of all the results are exempted for the end semester exam.

Mapping of COs wit	th PSOs and POs :
--------------------	-------------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	\checkmark	\checkmark	~	~	\checkmark

Programme	BSc Mathematics Honours						
Course Code	MAT8VN401						
Course Title	INTRODUCT	TION TO ARTIFICIAL IN	TELLIGENCI	E			
Type of Course	Vocational M	inor – Introduction to AI					
Semester	VIII	VIII					
Academic Level	400-499						
Course Details	Credit Lecture/Tutorial Practical Total Ho						
		per week	per week				
	4	3	2	75			
Pre-requisites	Python Program	mming, Foundation of Mathe	ematics, Machir	ne Learning			
Course Summary	exploration of representation, to advanced co and practical algorithm impl	Python Programming, Foundation of Mathematics, Machine Learning This course on "Introduction to Artificial Intelligence" offers a thorough exploration of AI fundamentals and techniques. Covering topics like representation, search algorithms, and intelligent agents, students' progress to advanced concepts including knowledge representation, neural networks, and practical implementations. With hands-on sessions focusing on algorithm implementation and machine learning models, students gain both theoretical understanding and practical skills essential for AI development.					

Course Outcome

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Understand foundation principles, mathematical tools and program paradigms of AI and Apply problem solving through search for AI applications	U	C	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment			
CO2	Understand formal methods of knowledge representation and Apply logic and reasoning techniques to AI applications	U	Р	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment			
CO3 Apply intelligent agents for Artificial Ap P Internal exam/ Intelligence programming techniques Ap P External/ Practical Assessment Assessment Assessment							
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)						

Module	Unit Content		Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to Artificial Intelligence		
	1	Introduction to AI, History and Evolution of AI, Applications		
	2	Introduction to representation and search		
Ι	3	The Propositional calculus, Predicate Calculus, Calculus expressions and Applications	10	Min.15
	4	State Space Search, Production Systems, Problem Characteristics, types of production systems, Graph theory		
	5	Intelligent Agents: Agents and Environments, The nature of environments, The structure of agents. concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation		
		Search Strategies		
	6	Uninformed Search Strategies - Breadth First Search, Depth First Search, Depth Limited Search, Iterative Deepening Depth First Search		
	7	Bidirectional Search, Comparison of Uninformed search Strategies, Searching with partial information		
II	8	Sensor-less problems, Contingency problems		
	9	Informed Search Strategies - Generate& test, Hill Climbing, Best First Search	14	Min.15
	10	A* and AO* Algorithm, Constraint satisfaction, Backtracking Search		
	11	Game playing: Minimax Search, Alpha-Beta Cutoffs		
	12	Optimal Decisions in Games, Stochastic Games		
		Knowledge Representation		
	13	Knowledge Representation -Knowledge based agents, Wumpus world		
III	14	Knowledge Representation -issues, The frame problem.		
	15	First order Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining	13	Min.15

	16	Propositional Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining		
	17	Agent based and distributed problem solving		
	18	Introduction to Expert System Technology, Bayes Rule,Bayesian Network, Hidden Markov Model, Decision Network		
IV		Introduction to ANN		
	19	Introduction ANN, biological neuron, Artificial neuron		
	20	Perceptron Learning	0	
	21	Back Propagation algorithm	8	Min.15
	22	Introduction to Natural Language Processing, Pattern recognition Case study - Enhancing Customer Service with AI- Powered Chatbots		
		Practical's	30	
	1	Write a program to implement depth first search algorithm.		
	2	Write a program to implement breadth first search algorithm.		
	3	Write a program to simulate 4-Queen / N-Queen problem.		
	4	Write a program to solve tower of Hanoi problem.		
	5	Write a program to implement alpha beta search.		
	6	Write a program for Hill climbing problem.		
	7	Write a program to implement A*algorithm		
	8	Write a program to implement AO*algorithm		
	9	Design the simulation of tic-tac-toe game using min-max algorithm		
	10	Write a program to shuffle Deck of cards		
	11	Write a program to derive the predicate.		
	12	Solve constraint satisfaction problem		
		(a) Derive the expressions based on Associative law		

	(b)Derive the expressions based on Distributive law.	
13	Develop a simple text-based game using Python that simulates a classic "Guess the Number" game. The game should generate a random number between 1 and 100 and prompt the player to guess the number. After each guess, the game should provide feedback to the player (e.g., "Too high", "Too low", or "Correct!") and keep track of the number of attempts it takes for the player to guess the correct number. Once the player guesses the correct number, the game should display the number of attempts and ask if the player wants to play again	
14	Train a simple machine learning model, such as a linear regression or logistic regression classifier, using a dataset of your choice and evaluate its performance using appropriate metrics.	
15	Implement a decision tree classifier from scratch and apply it to a classification task with a real-world dataset	
	References	
1	S. Russel and p. Norvig, Artificial intelligence – A Modern Approach, 3rdEdn, Pearson	
2	Artificial Intelligence: Elaine Rich, Kevin Knight, Mc- GrawHill	
3	Artificial Intelligence by Luger (Pearson Education)	
4	D W Patterson, introduction to Artificial Intelligence and Expert Systems, PHI, 1990	
5	Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville:	

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathemat	BSc Mathematics Honours						
Course Code	MAT1VN102	MAT1VN102						
Course Title	STATISTICS	FOR DATA SCIENCE						
Type of Course	Vocational Mi	nor – Introduction to Data	a Science					
Semester	Ι	Ι						
Academic Level	100-199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	Foundations in	mathematics	•					
Course Summary	Course aims to provide basic concepts such as central tendency, probability, sampling and testing							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used							
CO1	Understand measures of	U	С	Internal exam/ Assignment/							
	central tendency, dispersion,			Seminar/ External/							
	regression			Practical Assessment							
CO2	Distinguish discrete and	U	С	Internal exam/ Assignment/							
	continuous distributions and			Seminar/ External/							
	its properties			Practical Assessment							
CO3	Analyse data using testing	An	С	Internal exam/ Assignment/							
	hypothesis			Seminar/ External/							
				Practical Assessment							
* - Ren	nember (R), Understand (U),	Apply (Ap)	Analyse (An	n), Evaluate (E), Create (C)							
	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)										
Metacog	gnitive Knowledge (M)			Metacognitive Knowledge (M)							

Module	Unit	Content		Ext.
			(45	Marks
			+30)	(70)
Ι		Descriptive statistics		
	1	Measures of central tendency: - mean, median, mode		
	2	Measures of dispersion: Range, Mean deviation, Quartile deviation and Standard deviation		
	3	Moments, Skewness and Kurtosis,	11	Min.15
	4	Correlation - Linear correlation		
	5	Karl Pearson's coefficient of Correlation, Rank correlation		
	6	Linear regression- Simple and Multiple		
II		Probability		
	7	Sample space, Events, Different approaches to probability	7	Min.15
	8	Addition and multiplication theorems on probability		101111.1.5
	9	Independent events, Conditional probability		
	10	Bayes Theorem		
III		Probability Distributions		
	11	Random variables, Probability density functions and distribution functions		
	12	Marginal density functions, Joint density functions		
	12	Mathematical expectations	12	Min.15
	14	Moments and moment generating functions		
	15	Discrete probability distributions – Binomial, Poisson distribution		
	16	Continuous probability distributions- uniform distribution and normal distribution.		
III		Sampling and Testing		
	17	Theory of Sampling: - Population and sample, Types of sampling Theory of Estimation: - Introduction, point estimation		

18 methods of point estimation-Maximum Likelihood estimation and method of moments, Central Limit Theorem(Statement only) 19 Null and alternative hypothesis, types of errors, level of significance, critical region 15 20 Large sample tests – Testing of hypothesis concerning mean of a population and equality of means of two populations 15 21 Small sample tests – t Test for single mean, difference of means. Paired t-test 20 22 Chi-square test (Concept of test statistic ns2/o2), F test - test for equality of two population variances 30 23 ANOVA – one-way & two-way classification 30 I. Calculate the mean, median, and mode of a dataset. 2 Calculate the mean deviation of a dataset. 30 Calculate the standard deviation of a dataset. 3 Calculate the standard deviation of a dataset. 30 Calculate the Karl Pearson's coefficient of correlation between two variables. Calculate test correlation (e.g., Spearman's rank correlation) between two variables. On perform simple linear regression analysis. 10 Perform multiple linear regression analysis. 11 Calculate conditional probabilities and use Bayes' Theorem. 12 Apply addition and multip				
significance, critical region 15 20 Large sample tests – Testing of hypothesis concerning mean of a population and equality of means of two populations 15 21 Small sample tests – t Test for single mean, difference of means. Paired t-test 16 22 Chi-square test (Concept of test statistic ns2/σ2), F test - test for equality of two population variances 30 23 ANOVA – one-way & two-way classification 30 1 Calculate the mean, median, and mode of a dataset. 30 2 Calculate the quartile deviation of a dataset. 30 3 Calculate the quartile deviation of a dataset. 30 4 Calculate the quartile deviation of a dataset. 5 Calculate skewness and kurtosis of a dataset. 6 Calculate text orcrelation (e.g., Spearman's rank correlation) between two variables. 8 Calculate rank correlation (e.g., Spearman's rank correlation) between two variables. 9 Perform simple linear regression analysis. 11 Calculate robabilities of events using different approaches (e.g., classical, relative frequency, subjective). 12 Apply addition and multiplication theorems of probability to solve problems. 13 Calculate conditional probabilities and use Bayes' Theorem.	18	estimation and method of moments, Central Limit		
20 Large sample tests – Testing of hypothesis concerning mean of a population and equality of means of two populations 21 Small sample tests – t Test for single mean, difference of means. Paired t-test 22 Chi-square test (Concept of test statistic ns2/\00072), F test - test for equality of two population variances 23 ANOVA – one-way & two-way classification Practical using MS Excel 30 I. Calculate the mean, median, and mode of a dataset. 2. Calculate the range of a dataset. 30 3. Calculate the quartile deviation of a dataset. Calculate the standard deviation of a dataset. 5. Calculate the standard deviation of a dataset. Calculate skewness and kurtosis of a dataset. 6. Calculate the Karl Pearson's coefficient of correlation between two variables. 8. Calculate ronk correlation (e.g., Spearman's rank correlation) between two variables. 9. Perform multiple linear regression analysis. 10. Perform multiple linear regression analysis. 10. Perform multiple linear regression analysis. 11. Calculate conditional probabilities and use Bayes' Theorem. 14. Generate random samples from various probability distributions (e.g., biomial, Poisson, normal) and calculate relevant statistics. 15. Conduct hypothesis testing using Excel functions for large sample tests (e.g., z-test, t-test), small sample tests (e.g., t-test for single mean, paired t-test), chi-square test, F-test, and ANOVA. </td <td>19</td> <td></td> <td></td> <td>NC 15</td>	19			NC 15
of means. Paired t-test 22 Chi-square test (Concept of test statistic ns2/σ2), F test - test for equality of two population variances 23 ANOVA – one-way & two-way classification Practical using MS Excel 30 1. Calculate the mean, median, and mode of a dataset. 2. Calculate the mean, median, and mode of a dataset. 3. Calculate the mean deviation of a dataset. 4. Calculate the quartile deviation of a dataset. 5. Calculate the standard deviation of a dataset. 6. Calculate the standard deviation of a dataset. 7. Compute the Karl Pearson's coefficient of correlation between two variables. 8. Calculate rank correlation (e.g., Spearman's rank correlation) between two variables. 9. Perform simple linear regression analysis. 10. Perform multiple linear regression analysis. 11. Calculate conditional multiplication theorems of probability to solve problems. 13. Calculate conditional probabilities and use Bayes' Theorem. 14. Generate random samples from various probability distributions (e.g., binomial, Poisson, normal) and calculate relevant statistics. 15. Conduct hypothesis testing using Excel functions for large s	20	mean of a population and equality of means of two	15	Min.15
- test for equality of two population variances 23 ANOVA – one-way & two-way classification Practical using MS Excel 30 1. Calculate the mean, median, and mode of a dataset. 30 2. Calculate the range of a dataset. 30 3. Calculate the mean deviation of a dataset. 4. Calculate the quartile deviation of a dataset. 5. Calculate the standard deviation of a dataset. 6. Calculate the standard deviation of a dataset. 6. Calculate the standard deviation of a dataset. 7. Compute the Karl Pearson's coefficient of correlation between two variables. 8. Calculate rank correlation (e.g., Spearman's rank correlation) between two variables. 9. Perform multiple linear regression analysis. 10. Perform multiple linear regression analysis. 10. Perform multiple linear regression analysis. 11. Calculate probabilities of events using different approaches (e.g., classical, relative frequency, subjective). 12. Apply addition and multiplication theorems of probability to solve problems. 13. Calculate conditional probabilities and use Bayes' Theorem. 14. Generate random samples from various probability distributions (e.g., binomial, Poisson, normal) and calculate relevant statistics. 15. Conduct hypothesis testing using Excel functions for large sample tests (e.g., z-test, t-test), small sample tests (e.g., t-test for single mean, paired t-test), chi-square test, F-test, and ANOVA. Image: the stame deviation of t	21			
Practical using MS Excel 30 I. Calculate the mean, median, and mode of a dataset. 2. Calculate the range of a dataset. 3. Calculate the mean deviation of a dataset. 4. Calculate the quartile deviation of a dataset. 5. Calculate the standard deviation of a dataset. 5. Calculate the standard deviation of a dataset. 6. Calculate the standard deviation of a dataset. 7. Compute the Karl Pearson's coefficient of correlation between two variables. 8. Calculate rank correlation (e.g., Spearman's rank correlation) between two variables. 9. Perform simple linear regression analysis. 10. Perform multiple linear regression analysis. 10. Perform multiple linear regression analysis. 11. Calculate probabilities of events using different approaches (e.g., classical, relative frequency, subjective). 12. Apply addition and multiplication theorems of probability to solve problems. 13. Calculate conditional probabilities and use Bayes' Theorem. 14. Generate random samples from various probability distributions (e.g., binomial, Poisson, normal) and calculate relevant statistics. 15. Conduct hypothesis testing using Excel functions for large sample tests (e.g., z-test, t-test), small sample tests (e.g., t-test for single mean, paired t-test), chi-square test, F-test, and ANOVA.	22			
1. Calculate the mean, median, and mode of a dataset. 2. Calculate the range of a dataset. 3. Calculate the mean deviation of a dataset. 4. Calculate the quartile deviation of a dataset. 5. Calculate the standard deviation of a dataset. 6. Calculate the standard deviation of a dataset. 7. Compute the Karl Pearson's coefficient of correlation between two variables. 8. Calculate rank correlation (e.g., Spearman's rank correlation) between two variables. 9. Perform simple linear regression analysis. 10. Perform multiple linear regression analysis. 11. Calculate probabilities of events using different approaches (e.g., classical, relative frequency, subjective). 12. Apply addition and multiplication theorems of probability to solve problems. 13. Calculate conditional probabilities and use Bayes' Theorem. 14. Generate random samples from various probability distributions (e.g., binomial, Poisson, normal) and calculate relevant statistics. 15. Conduct hypothesis testing using Excel functions for large sample tests (e.g., z-test, t-test), small sample tests (e.g., t-test for single mean, paired t-test), chi-square test, F-test, and ANOVA. 14. Generatels of statistics: S. C. Gupta, 6th Revised and Image: Statistics: S. C. Gupta, 6th Revised and Statistics: Statistics: Statistics: Statistics: Statistices: Statisti	23	ANOVA – one-way & two-way classification		
2. Calculate the range of a dataset. 3. Calculate the mean deviation of a dataset. 4. Calculate the quartile deviation of a dataset. 5. Calculate the standard deviation of a dataset. 6. Calculate skewness and kurtosis of a dataset. 7. Compute the Karl Pearson's coefficient of correlation between two variables. 8. Calculate rank correlation (e.g., Spearman's rank correlation) between two variables. 9. Perform simple linear regression analysis. 10. Perform multiple linear regression analysis. 11. Calculate probabilities of events using different approaches (e.g., classical, relative frequency, subjective). 12. Apply addition and multiplication theorems of probability to solve problems. 13. Calculate conditional probabilities and use Bayes' Theorem. 14. Generate random samples from various probability distributions (e.g., binomial, Poisson, normal) and calculate relevant statistics. 15. Conduct hypothesis testing using Excel functions for large sample tests (e.g., z-test, t-test), small sample tests (e.g., t-test for single mean, paired t-test), chi-square test, F-test, and ANOVA. 1 Fundamentals of statistics: S. C. Gupta, 6th Revised and		Practical using MS Excel	30	
1 Fundamentals of statistics: S. C. Gupta, 6th Revised and		correlat opproach obabilit ty distri levant s s for larg ts (e.g., 1	ion) les (e.g., y to em. butions tatistics. ge t-test for	
	1	· ·		

2	Fundamentals of Mathematical Statistics- S. C. Gupta, V. K. Kapoor. Sultan Chand Publications	
3	Introduction to Mathematical Statistics - Robert V. Hogg & Allen T. Craig. Pearson education	
3	Probability and Statistics for Engineering and the Sciences, Jay L. Devore, Cengage Learning, January 2022, ISBN for the 10th Edition: 978-1305251809	

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	√	√	~	\checkmark
CO 3	~	\checkmark	✓	~	\checkmark

Programme	BSc Mathematic	es Honours					
Course Code	MAT2VN102						
Course Title	R PROGRAM	MING					
Type of Course	Vocational Mir	Vocational Minor – Introduction to Data Science					
Semester	II						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Foundations in Mathematics, Programming Fundamentals						
Course Summary	Course aims to writing	provide R programming	g fundamental	s and algorithm			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Understand the basic	U	Р	Internal exam/ Assignment/				
	programming structure of			Seminar/ External/ Practical				
	R, visualization of models			Assessment				
	and their inference.							
CO2	Apply statistical functions,	Ар	Р	Internal exam/ Assignment/				
	models and their Inferences			Seminar/ External/ Practical				
				Assessment				
CO3	Design data model,	С	Р	Internal exam/ Assignment/				
	visualization and inference			Seminar/ External/ Practical				
	of dataset to gain insights			Assessment				
* - Ren	nember (R), Understand (U),	Apply (Ap), Analyse (A	An), Evaluate (E), Create (C)				
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)							
Metaco	Metacognitive Knowledge (M)							

Module	Unit	Content		Ext.
			(45	Marks
			+30)	(70)
		Introduction to R	150)	
Ι	1	Introduction to R: R Studio, Basic components in R Studio.		
	2	Basic R syntax: variables, data types, operators	10	Min.10
	3	Working with Data structures Vectors, List, Matrices & Arrays, Factors and Data frame	10	141111.10
	4	Control structures (if-else statements, Loops) & Functions		
	5	Measures of Central Tendency & Dispersion		
		Data Manipulation and Visualization with R		
	6	Importing and exporting data in R (CSV, Excel, Xml, Json, databases)		
	7	Data Cleaning: Exploring raw data, Missing values, Zeros and NAs – Separating, Uniting Columns, String Manipulation, Filling Missing values		
II	8	Data manipulation with dplyr: filtering, selecting, mutating, summarizing	13	Min.20
	9	Basic Charts: Pie, Bar, Histogram, Boxplot and Scatterplot		
	10	10 Data visualization with ggplot2: creating plots (scatter plots, bar plots, line plots)		
	11Customizing plots and Introduction to other Visualization Packages (ggplot2 extensions, plotly)			
		Statistical Analysis with R		
	12	Overview of statistical analysis in R		
ш	13	Descriptive statistics: mean, median, standard deviation, variance	9	Min.15
	14	Probability distributions and random variables		
	15	Hypothesis testing: t-tests, chi-square tests, ANOVA]	
	16	Linear regression analysis: simple and multiple regression		

	17	Introduction to statistical modelling with R				
IV		Introduction to Machine Learning with R				
	18	Introduction to machine learning concepts and algorithms				
	19	Supervised learning techniques: classification and regression	13	Min.15		
	20	Unsupervised learning techniques: clustering and dimensionality reduction				
	21	Case study – Explore Diamond dataset for prize prediction				
	22	Applied Analytics – HR, Finance & Marketing, Case studies				
		Practical's	30			
	1	Write a R program to take input from user (name, age, occupation, salary) and display the values with datatypes. Also print version of R installation.				
	2	Write a R program to calculate the sum of numbers from	n 1 to 10).		
	3	 Write a R Program to create a list containing a vector, a matrix and a and write a code for the following. 1) Give names to the elements in the list 2) Add element at the end of the list 3) Remove the second element 				

4	R program to create a data frame of student with four given vectors and write a code
	1) to get the structure of a given data frame.
	2) to get the statistical summary and nature of the data of a given data frame.
	3) to extract specific column from a data frame using column name.
	4) to extract first two rows from a given data frame.
	5) to extract 3rd and 5th rows with 1st and 3rd columns from a given data frame.
	6) to add a new column in a given data frame.
	7) to add new row(s) to an existing data frame.
	8) to drop column(s) by name from a given data frame.
	9) to drop row(s) by number from a given data frame.
	a) 10) to extract the records whose grade is greater than 9
5	Write a R program to find biggest of 3 number (if -else)
6	Write a R program to find sum of elements of vector and to find minimum and maximum elements of vector (loop)
7	Write a R program to Import a CSV file named 'data.csv' into a data frame named 'data_df'.
	a) Display the structure of the 'data_df' data frame using the 'str()' function.
	b) Print the first few rows of the data frame to inspect the data using the 'head()' function.
	c) Calculate summary statistics (mean, median, min, max) for numerical variables in the data frame using the 'summary()' function.
 1	

8	 Write a Program in R for Missing value imputation Load the 'iris' dataset into a data frame named 'iris_df'. Introduce missing values into the 'iris_df' dataset by randomly replacing a certain percentage of values with NA. Display the summary of missing values in the dataset using the 'is.na()' and 'colSums()' functions. Impute missing values in the dataset using a simple technique (e.g., replacing missing values with the mean or median of the corresponding column). Verify that there are no missing values remaining in the dataset after imputation. Compare summary statistics (mean, median, min, max) of the dataset before and after missing value imputation.
9	Import a dataset from a CSV file and use dplyr to filter rows based on a condition.
10	Write a R Program to print data in different graph formats (Histogram, Pie, Bar, Boxplot, Scatterplot)
	 Write a R program to visualize different plot using ggplot Load the 'iris' dataset into a data frame named 'iris_df'. Create a scatter plot of 'Sepal.Length' against 'Sepal.Width' with points colored by 'Species'. Generate a box plot of 'Petal.Length' for each 'Species'. Create a histogram of 'Sepal.Length' with customized bin widths and colors. Generate a density plot of 'Petal.Width' for each 'Species' overlaid on the same plot. Create a bar plot showing the count of each 'Species' in the dataset. Generate a violin plot of 'Petal.Length' for each 'Species' with custom fill colors. Create a line plot showing the trend of 'Sepal.Length' over 'Petal.Length' for each 'Species'. Combine multiple plots into a single visualization using facets based on 'Species'.
12	Write a Program to find mean, median, standard deviation and variance

13	The heights of 6 randomly chosen sailors are 63,65,68, Those of 10 randomly chosen soldiers are 61,62,65,66,6 inches. Discuss whether this data gives a suggestion th taller than soldiers. Aim: To test the claim that sailors are taller than soldiers	9,69,70, at the sa	71,72,73
14	Write a R Program to Apply Simple Linear Regression	on and	Multiple
15	Write a R Program to Apply K-means clustering algorithm to the data and visualize the clusters.		
	References		
1	Hands-On Programming with R by Garrett Grolemund		
2	R Cookbook by Winston Chang, Paul Teetor, and Joseph Adler		
3	Beginning R: The Statistical Programming Language by Mark Gardener		
4	The Art of R Programming by Norman Matloff		
5	Advanced R by Hadley Wickham		

Mapping of COs wit	th PSOs and POs :
--------------------	-------------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	3	3	2	2
CO 2	3	3	3	2	3	3	3	2	2
CO 3	3	3	3	2	3	3	3	2	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathema	BSc Mathematics Honours				
Course Code	MAT3VN202					
Course Title	DATA MINI	NG				
Type of Course	Vocational M	linor – Introduction to D	ata Science			
Semester	III					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	Basic Knowle	edge in MS Excel	•	•		
Course Summary	Course aims t	Course aims to provide basic data mining techniques using Weka tool				

Course Outcome:

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used	
CO1	Understand the fundamental	U	С	Internal exam/ Assignment/	
	concepts and principles of			Seminar/ External/ Practical	
	data mining			Assessment	
CO2	Understand the mining	U	Р	Internal exam/ Assignment/	
	techniques like association,			Seminar/ External/ Practical	
	classifications and			Assessment	
	clustering on datasets				
CO3	Apply data mining	Ар	Р	Internal exam/ Assignment/	
	techniques to real-world			Seminar/ External/ Practical	
	datasets			Assessment	
* - Ren	nember (R), Understand (U),	Apply (Ap), Analyse (A	n), Evaluate (E), Create (C)	
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)				
Metaco	gnitive Knowledge (M)				

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to Data Mining		
	1	Data Warehousing - Data warehousing architecture, Warehouse Schema, Data warehouse backend process, Multidimensional Data Model		
	2	OLAP Operations, Introduction to KDD process, Data mining	8	Min 15
Ι	3	Data mining Functionalities, Classification of Data Mining Systems.		
	4	Data Warehousing Case Study: Government, Tourism and Industry		
	5	Data Preprocessing - Data Cleaning, Data Integration and Transformation, Data Reduction, Data discretization		
		Association Analysis		
	6	Association Analysis - Basic Concepts, Frequent Item set Mining Methods: Apriori Algorithm, generating association Rules from Frequent Item sets, Improving the Efficiency of Apriori.	7	Min 15
II	7	Evaluation of Association Patterns, Visualization, Partition algorithm		
		A Case Study on Association using Orange Tool		
	8	Dynamic Item set Counting algorithm- FP-tree growth algorithm-Incremental Algorithm-Border algorithm		
		Classification & Prediction		
	9	Classification Technique: Introduction, Decision Trees: Tree Construction Principle – Attribute Selection measure – Tree Pruning - Decision Tree construction Algorithm – CART – ID3		
III	10	Bayesian Classification: Bayes' theorem, Naïve Bayesian Classification	14	Min 15
	11	K- Nearest Neighbour Classifiers, Support Vector Machine. Evaluating the performance of a Classifier, Methods for comparing classifiers, Visualization		
	12	Case Study of Classification using Orange Tool		

	13	Linear Regression, Nonlinear Regression, Other Regression-Based Methods		
		Clustering		
	14	Clustering techniques: Data Attribute Types – Data Similarity and Dissimilarity		
	15	Partitioning Methods: k-Means and k- Medoids, CLARANS		
	16	Hierarchical Method: Agglomerative and Divisive Hierarchical Clustering		
	17	Density-based Clustering - DBSCAN, Grid based clustering-STING		
IV	18	Evaluation of Clustering Method	16	Min 15
	19	Case Study of Clustering using Orange Tool		
	20	Introduction to Web Mining - Basic concepts, Web content mining, Web structure mining, Web usage mining		
	21	Introduction to Text mining, Text Preprocessing, Text clustering		
	22	Case Study – Web Mining: Analysing User Behaviour on E-commerce Website Case Study - Sentiment Analysis of Customer Reviews		
		Practical's		
	1	Installation of WEKA Tool		
	2	Creating new Arff File		
	3	Pre-Processes Techniques on Data Set		
	4	Pre-process a given dataset based on Handling Missing Values		
	5	Generate Association Rules using the Apriori Algorithm		
	6	Generating association rules using FP growth algorithm	30	
	7	Build a Decision Tree by using ID3 algorithm		
	8	Build a Naïve Bayesian Classifier		
	9	Build a K- Nearest Neighbour Classifiers		
	10	Build a Support Vector Machine		

11	Build a Linear Regression	
12	Build K-Means Algorithm	
13	Build K-Medoids Algorithm	
14	Build Hierarchical Clustering Algorithms	
15	Create Student. ariff file to suggest better college using Decision tree	
	References	
1	Arun K Pujari, "Data Mining Techniques", Universities Press. 2012	
2	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 'Introduction to Data Mining'	
3	G. K. Gupta, "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.	
4	Data Mining: Practical Machine Learning Tools and Techniques" by Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal:	
5	Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei:	

Mapping of COs with	PSOs and POs :
---------------------	----------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	BSc Mathemati	BSc Mathematics Honours					
Course Code	MAT8VN402	MAT8VN402					
Course Title	DATA VISUA	LIZATION					
Type of Course	Vocational Minor – Introduction to Data Science						
Semester	VIII	VIII					
Academic Level	400-499	400-499					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Minor 1 and mi	nor 2	•				
Course	Course aims	to provide data visua	lization techn	iques using R			
Summary	programming an	programming and interactive chart building					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used					
CO1	Understand the methods for	U	C	Internal exam/ Assignment/					
	visualizing data			Seminar/ External/ Practical					
				Assessment					
CO2	Apply Visualization	Ар	Р	Internal exam/ Assignment/					
	methods for different data			Seminar/ External/ Practical					
	domains			Assessment					
CO3	Design an Interactive data	С	С	Internal exam/ Assignment/					
	visualization story board for			Seminar/ External/ Practical					
	data			Assessment					
* - Rei	nember (R), Understand (U),	Apply (Ap	o), Analyse (An), Evaluate (E), Create (C)					
# - F	actual Knowledge(F) Conce	eptual Kno	wledge (C)	Procedural Knowledge (P)					
Metaco	Metacognitive Knowledge (M)								

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to Data Visualization	8	Min.10
	1	Definition, Methodology, Data Visualization and Theory, Visualization Design objectives		
	2	Key Factors – Purpose, visualization function and tone, visualization design options – Data representation, Data Presentation		
Ι	3	Seven stages of data visualization, widgets, and introduction to different data visualization tools		
	4	Computational Statistics and Data Visualization, Presentation and Exploratory Graphics		
	5	Graphics and Computing, Statistical Historiography		
		Visualizing Data Methods	13	Min.15
	6	Mapping, Time series, Connections and correlations - Scatter plot maps		
	7	Hierarchies and Recursion – introduction to Networks and Graphs, Info graphics		
п	8	Complete Plots, Customization of plots -Parameters, Arranging Plots, Annotation,		
	9	Extensibility-Building Blocks, Combining Graphical Elements, 3-D Plots, Data Handling		
	10	Data and Graphs, Graph Layout Techniques, Graph Drawing		
	11	Bipartite Graphs, Hierarchical Trees, Spanning Trees, Networks, Directed Graphs, Tree maps		
		Data visualization using R	12	Min.20
	12	Environment setup - R and RStudio, Basic plotting functions in R $% \left({{{\mathbf{R}}_{\mathbf{R}}} \right)$		
III	13	Creating scatter plots, histograms, pie chat, bar charts, Boxplot, violin plot, line chart, heatmap, Customizing plot appearance,		
	14	Introduction to ggplot2, Grammar of graphics, creating static plots with ggplot2, Customizing plots with themes and scales		

	15 16	Introduction to plotly for interactive plotting, Creating interactive scatter plots, line plots, and bar charts, Adding interactivity with tooltips, zooming, and brushing Designing interactive dashboards with Shiny and plotly, Other Visualization Pacakges		
IV		Introduction to Tableau	12	Min.15
	17	Environment Setup, Design flow, Data Types, File Types		
	18	Data Source - Custom Data View, Extracting Data, Field operations, Metadata, Data Joining and Blending		
	19	Worksheets- Adding, renaming, reordering Worksheet, Workbook Calculations		
	20	Sort and Filters- Sorting, Quick filtering, Context filtering, Condition filtering, Filter operations		
	21	Tableau Charts — Bar Chart, Line Chart, Multiple Measure Line Chart, Pie Chart		
	22	Scatter Plot, Bubble Chart, Bullet Graph, Box Plot, Dashboard – Formatting – Forecasting – Trend Lines		
		Practical's using R	30	
	1	Exploring Data with Basic Plots		
		• Load a dataset (e.g., Iris dataset) into R.		
		• Create scatter plots, histograms, and box plots to explore the distribution of variables.		
		• Label axes, add titles, and customize colors and styles		
	2	Visualizing Relationships		
		• Choose a dataset with multiple variables.		
		• Create scatter plots to visualize relationships between pairs of variables.		
		• Use color or shape to represent categorical variables.		
		• Analyze patterns and correlations in the data		

2		
3	Time Series Visualization	
	• Load a time series dataset (e.g., stock prices, weather data) into R.	
	• Create line plots to visualize trends and fluctuations over time.	
	• Use different line styles or colors to represent multiple time series.	
	• Add labels, titles, and annotations to the plot	
4	Bar and Pie Charts:	
	• Load a dataset with categorical variables (e.g., survey responses, product categories).	
	• Create bar charts and pie charts to visualize the distribution of categories.	
	• Customize the appearance of the charts (e.g., colors, labels, legends).	
5	Heatmaps and Correlation Plots:	
	• Load a dataset with numerical variables (e.g., correlation matrix).	
	• Create heatmaps to visualize correlations between variables.	
	• Customize the color scheme and add annotations to the heatmap.	
	• Interpret the patterns of correlation in the data	
6	Box Plots and Violin Plots:	
	• Load a dataset with numerical and categorical variables (e.g., Iris dataset).	
	• Create box plots and violin plots to visualize the distribution of numerical variables across different categories.	
	• Compare the use of box plots and violin plots for data visualization	

-			
	7	Interactive Visualizations with ggplot2 and Shiny:	
		• Create interactive plots using ggplot2 and Shiny.	
		• Design a Shiny app with interactive controls (e.g., sliders, checkboxes) to explore different aspects of the data.	
	8	Geospatial Visualization:	
		• Load a dataset with geographical information (e.g., map coordinates, regions).	
		• Create maps using packages like ggmap, leaflet, or tmap to visualize spatial data.	
		• Add layers, markers, and tooltips to the map to provide additional information	
	9	Faceted Plots:	
		• Load a dataset with multiple groups or categories.	
		• Create faceted plots using ggplot2 to display subsets of the data in separate panels.	
		• Customize the appearance of each panel (e.g., axis limits, labels, titles	
	10	Network Visualization:	
		• Load a dataset representing a network or graph (e.g., social network, co-authorship network).	
		• Create network visualizations using packages like igraph or networkD3.	
		• Customize the layout, node colors, and edge weights to convey information about the network structure.	
	11	Word Clouds and Text Visualization:	
		• Load a dataset containing text data (e.g., tweets, reviews).	
		• Create word clouds to visualize word frequency and importance.	
		• Customize the appearance of the word cloud (e.g., colors, fonts, word sizes).	

 1		
12	Dashboards with Plotly and Shiny:	
	• Design an interactive dashboard using Plotly and Shiny.	
	• Incorporate interactive plots, tables, and controls to explore and analyze data dynamically.	
13	Dynamic Visualizations	
	• Load a dataset with time-varying data (e.g., stock prices, sensor readings).	
	• Create animated plots using package plotly.	
	• Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization.	
14	Visualizing Hierarchical Data	
	• Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories).	
	• Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures.	
	• Customize the appearance of the plots to highlight different levels of hierarchy.	
15	Dashboard Design	
	• Design a dashboard layout with multiple visualizations and interactive components.	
	• Arrange the visualizations in a coherent and informative manner.	
	• Add text annotations, titles, and summaries to provide context and insights.	
	References	
1	Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.	
2	Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2nd edition, 2017	
3	Fundamentals of Data Visualization" by Claus O. Wilke	
4	Data Visualization: A Practical Introduction" by Kieran Healy	
5	Learning tableau by Joshua N. Milligan	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	~	\checkmark	\checkmark
CO 2	~	√	~	~	✓
CO 3	\checkmark	\checkmark	\checkmark	~	\checkmark

MINOR COURSES

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1MN101	MAT1MN101					
Course Title	CALCULUS						
Type of Course	Minor						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit Lecture/Tutorial Practical Total Hours						
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Idea of Fu	nctions, Limits and Continu	lity				
Course Summary	introducing the illustrating the instantaneous r product, quotie higher-order de differentials, ex inflection point integration by s definite integra	44-60Basic Idea of Functions, Limits and ContinuityThis course covers fundamental concepts in calculus: It begins with introducing the idea of tangent lines, rates of change, and the derivative, illustrating their application in describing motion and finding instantaneous rates of change. Basic rules of differentiation, including the product, quotient, and power rules, as well as techniques for finding higher-order derivatives are discussed. It also covers related rates, differentials, extrema of functions, the mean value theorem, concavity, inflection points, curve sketching, indefinite and definite integrals, integration by substitution, and the geometric interpretation of the definite integral. These sections explore various calculus techniques for analysing functions, determining areas under curves, and solving real-					

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1 CO2	Demonstrate proficiency in finding derivatives using various differentiation techniques and apply them to describe motion, rates of change, and related rates problems. Analyse functions to determine	Ap	C	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam Internal
	extrema, concavity, and inflection points using the Mean Value Theorem, First and Second Derivative Tests, leading to effective curve sketching.	All	C	Exam/Assignme nt/ Seminar/ Viva / End Sem Exam
CO3	Apply integration techniques to compute areas between curves, volumes of solids of revolution, arc lengths, and surface areas, culminating in understanding the Fundamental Theorem of Calculus and its applications.	Ap	С	Internal Exam/Assignme nt/ Seminar/ Viva / End Sem Exam
# - Fac	nember (R), Understand (U), Apply (Ap), tual Knowledge(F) Conceptual Knowledg ognitive Knowledge (M)			

Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Introduction to Differentiation		
	1	A Quick Review of Functions, Limits, and Continuity (This unit is optional)		
	2	Section 1.5: Tangent Lines and Rates of Change - An intuitive Look, Defining a Tangent Line, Tangent lines, Secant lines and Rates of Change.		
	3	Section 2.1: The Derivative - The Derivative, Using the Derivative to Describe the Motion of the Maglev, Differentiation, Finding the Derivative of a Function, Differentiability, Differentiability and Continuity	14	Min 15
I	4			
	5	Some Basic Rules Section 2.3: The Product and Quotient Rules - The Product and Quotient Rules(Example 6 is optional), Extending the Power Rule, Higher- Order Derivatives		
	6	Section 2.6: The Chain Rule – Composite Functions, The Chain Rule, Applying The Chain Rule		
	7	Section 2.7 : Implicit Differentiation – Implicit Functions, Implicit Differentiation		
	8			
		Problems. Applications of Differentiation		
	9	Section 2.9: Differentials and Linear Approximations - Increments, Differentials, Linear Approximations		
	10	Section 3.1: Extrema of Functions - Absolute Extrema of Functions, Relative Extrema of Functions, Finding the Extreme Values of a Continuous Function on a Closed Interval		
	11	Section 3.2: The Mean Value Theorem - Rolle's Theorem, Some Consequences of the Mean		7 <i>4</i>
II		Value Theorem, Determining the Number of Zeros of a Function.	12	Min 15
	12	Section 3.3: Increasing and Decreasing Functions and	14	
		the First Derivative Test - Increasing and Decreasing Functions, Finding the Relative Extrema of a Function		
	13	Section 3.4: Concavity and Inflection Points - Concavity, Inflection Points(Example 6 is optional),		
		The Second Derivative Test, The roles of f' and f'' in Determining the Shape of a Graph.		
III	14	Introduction to Integration Section 3.6: Curve Sketching -		

		The Graph of a Function, Guide to Curve Sketching (Up to and including Example 2)	10	Min 15
	15	Section 4.1: Indefinite Integrals -	10	
	10	Antiderivatives, The indefinite Integral, Basic Rules of		
		Integration.		
	16	Section 4.2: Integration by Substitution -		
		How the method of Substitution Works, The Technique		
		of Integration by Substitution (Example 8 is optional)		
	17	Section 4.3: Area -		
		An Intuitive Look, Sigma Notation, Summation		
		Formulas, Defining the Area of The Region Under the		
		Graph of a Function (Example 9 is optional)		
	18	Section 4.4: The Definite Integral -		
		Definition of the Definite Integral (Examples 2,3, and 4		
		are optional), Geometric Interpretation of the Definite		
		Integral, The Definite Integral and Displacement,		
		Properties of the Definite Integral.		
		The Main Theorem and Applications of Integration		
	19	Section 4.5: The Fundamental Theorem of Calculus -		
		The Mean Value Theorem for Definite Integrals, The		
		Fundamental Theorem of Calculus - Part 1, Fundamental		
		Theorem of Calculus - Part 2, Evaluating Definite		
		Integrals using Substitution, Definite Integrals of Odd	10	N. 1
	20	and Even Functions	12	Min 1
11.7	20	Section 5.1: Areas Between Curves -		
IV		A Real- Life Interpretation, The Area Between Two		
	21	Curves, Integrating with Respect to y		
	21	Section 5.2: Volumes: Disks, Washers, and Cross Sections -		
		Solids of Revolution, The Disk Method, The Method of Cross Sections.		
	22	Section 5.4: Arc Length and Areas of Surfaces of		
		Revolution - Definition of Arc Length, Length of a		
		Smooth Curve, Surfaces of Revolution		
		Open Ended	12	
	1	Limits Involving Infinity; Asymptotes		
	2	Derivatives of Trigonometric Functions		
	3	The General Power Rule and using the Chain Rule		
	4	Volumes Using Cylindrical Shells		
V	5	Work, Moments and Centre of Mass		
	6	Taylor & Maclaurin's Series		
	7	Approximation by Taylor Series		
	8	Transcendental Functions		
	9	Improper Integrals		
	10	Numerical Integration		
	10			1

1. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.

- 2. Thomas' Calculus, 14th Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.
- 3. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.

- 4. Advanced Engineering Mathematics, 10th Ed, Erwin Kreyszig, John Wiley & Sons.
- 5. Calculus, 4th Edition, Robert T Smith and Roland B Minton, McGraw-Hill Companies
- 6. Calculus, 9th Edition, Soo T Tan, Brooks/Cole Pub Co.
- 7. Calculus, Vol 1, Tom M. Apostol, John Wiley & Sons.
- 8. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	1
CO 2	2	1	3	1	3	1	3	1	2
CO 3	3	2	3	1	3	1	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	\checkmark	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT2MN101						
Course Title	DIFFERENTIAL EQUATIONS AND MATRIX THEORY						
Type of Course	Minor						
Semester	II						
Academic	100-199						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus						
Course	This course cov	ers a range of topics. It star	ts with introduc	ing fundamental			
Summary		d methods for solving differ					
		ions, linear equations, exact					
		eients. Then it proceeds into					
		near equations with constant					
		iding methods for their solu					
	•	definition, properties, and a		e			
		ansforming derivatives are					
		with an introduction to vector spaces, matrix theory and the eigenvalue					
		problem, Fourier series, and separable partial differential equations,					
		prehensive foundation in a	dvanced calcult	us and its			
	applications to	engineering and physics.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Solve basic ordinary differential equations	Ар	С	Internal Exam/Assignment/
	using separation of variables, linear methods, and Laplace transforms.			Seminar/ Viva / End Sem Exam
CO2	Apply concepts from linear algebra, including matrices, determinants, and eigenvalues, to solve systems of equations and analyse linear systems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Analyse periodic functions using Fourier series and solve separable partial differential equation	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	emember (R), Understand (U)		• • •	
	ctual Knowledge(F) Concept	ual Knowledge (O	C) Procedural Know	vledge (P)
Meta	cognitive Knowledge (M)			

-	Text	Advanced Engineering Mathematics, 6 th Edition, Dennis G. Zi Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2	ill, Jone	s &
	Module	Content	Hrs (48 +12)	Ext. Marks (70)
I	1	Differential Equations Introduction to Differential Equations -		
1	1	A Definition, Classification by Type, Notation, Classification by Order, Classification by Linearity, Solution (with examples)		
	2	Section 2.2: Separable Equations - Introduction, A Definition, Method of Solution (with examples)		
	3	Section 2.3: Linear Equations - Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem (Examples 4 & 5, ref section 1.1)	11	Min 15
	4	Section 2.4: Exact Equations - Introduction, Differential of a Function of Two Variables, Method of Solution.		
	5	Section 3.3: Homogeneous Linear Equations with Constant Coefficients - Introduction, Auxiliary Equation.		
	6	Section 3.6: Cauchy-Euler Equations - Cauchy-Euler Equation (Second Order Only), Method of Solution.		
		Laplace Transforms		
II	7	Section 4.1: Definition of the Laplace Transform - Basic Definition (Definition 4.1.1 onwards)		
,	8	Section 4.1: Definition of the Laplace Transform - <i>L</i> is a Linear Transform.		
	9	Section 4.2: The Inverse Transform and Transforms of Derivatives - Inverse Transforms		
	10	Section 4.2: The Inverse Transform and Transforms of Derivatives - Transforms of Derivatives	14	Min 15
	11	Section 7.6: Vector Spaces - Vector Space (Example 2 is optional), Subspace.		
	12	Section 7.6: Vector Spaces - Basis, Standard Bases, Dimension, Span		
III	12	Matrix Theory Section 8.2: Systems of Linear Algebraic Equations	13	Min 15
	13	Section 8.2: Systems of Linear Algebraic Equations - Introduction, General Form, Solution, Augmented Matrix, Elementary Row Operations, Elimination Methods.		
	14	Section 8.2: Systems of Linear Algebraic Equations - Homogeneous Systems, Notation		
	15	Section 8.3: Rank of a Matrix - Introduction, A Definition, Row Space, Rank by Row Reduction, Rank and Linear Systems.		

	16	Section 8.4: Determinants -		
	10	Introduction, A Definition (Topics up to and including Example		
		2).		
	17	Section 8.8: The Eigenvalue Problem -		
	1/	Introduction, A Definition (Topics up to and Including Example		
		4)		
	18	Section 8.8: The Eigenvalue Problem -		
		Eigenvalues and Eigenvectors of A^{-1} .		
IV		Fourier Series and PDE		
	19	Section 12.2: Fourier Series -		
		Trigonometric Series (Definition 12.2.1 onwards), Convergence		
		of a Fourier Series.		
	20	Section 12.3: Fourier Cosine and Sine Series -		
		Introduction, Even and Odd Functions, Properties, Cosine and	10	26 17
		Sine Series (Definition 12.3.1 onwards).	10	Min 15
	21	Section 13.1: Separable Partial Differential Equations -		
		Introduction, Linear Partial Differential Equation, Solution of a		
		PDE, Separation of Variables.		
	22	Section 13.1: Separable Partial Differential Equations -		
		Classification of Equations.		
		Open Ended		
	1	Initial-Value Problems		
	2	Method of Integrating Factors		
	3	Differential Equations as Mathematical Models		
	4	Second Order Non-Homogeneous Equations-Method of		
		Undetermined Coefficients, Variation of Parameters.		
	5	Linear Models – IVP and their solutions by Laplace Transform	12	
	6	Linear Models - BVP		
	7	Non-linear Models		
	8	Complex Eigen Values		
	9	Half- Range Fourier Series		
	10	Classical PDEs and Boundary- Value Problems		
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 10 th Edition		India
	2	Calculus & Analytic Geometry, 9 th Edition, George B. Thomas &	Doca I	Finney
		Pearson Publications.	KOSS L.	rinney,
	3	Calculus, 7 th Edition, Howard Anton, Biven, & Stephen Davis, W	iley Indi	a.

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs wit	th PSOs and POs :
--------------------	-------------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics Honours							
Course Code	MAT3MN201							
Course Title	CALCULUS	OF SEVERAL VARIABLE	2S					
Type of Course	Minor							
Semester	III							
Academic Level	200 - 299							
Course Details	Credit Lecture/Tutorial Practical Total Hours							
	per week per week							
	4	4	-	60				
Pre-requisites	Calculus of Sir	ngle Variable						
Course	This course pro	ovides a comprehensive study	of advanced c	alculus topics,				
Summary	including parti	al derivatives, limits, continu	ity, the chain ru	le, and vector-				
	valued function	ns. Students will explore di	rectional derivation	atives, tangent				
	planes, and extrema of functions of multiple variables, as well as integral							
	calculus techniques such as line integrals, double integrals (including							
	those in polar c	oordinates), surface integrals	, and the applic	ations of these				
	concepts in veo	ctor calculus and field theory						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Apply Multivariable	Ap	Р	Internal				
	Calculus Concepts to			Exam/Assignment/				
	Vector Valued Functions			Seminar/ Viva /				
				End Sem Exam				
CO2	Apply Techniques of	Ар	Р	Internal				
	Multivariable Integration			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
CO3	Apply Advanced Theorems	Е	С	Internal				
	in Multivariable Calculus			Exam/Assignment/				
				Seminar/ Viva /				
				End Sem Exam				
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
	Factual Knowledge(F) Conc	eptual Knowled	lge (C) Procedu	ral Knowledge (P)				
Metac	ognitive Knowledge (M)							

Textbook		ılus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) 6579-7	ISBN-1	13: 978-0
Module	Unit	Content	Hrs (48	Ext. Marks (70)
			+12)	
Ι		Partial Derivatives	14	Min 15
	1	12.1: Vector Valued Functions & Space Curves		
	2	12.2: Differentiation & Integration of Vector Valued Functions		
	3	13.1: Functions of Two or More Variables		
	4	13.2: Limits & Continuity		
	5	13.3: Partial Derivatives		
	6	13.4: Differentials		
	7	13.5: The Chain Rule		
	8	13.6: Directional Derivatives		
	9	13.7: Tangent Planes & Normal Lines		
	10	13.8: Extrema of Functions of Two Variables		
II	V	ector Derivatives – Calculus of Scalar & Vector Fields	11	Min 15
	11	13.6: Gradient Vector of a Scalar Field		
	12	15.1, 15.2: Divergence & Curl of Vector Fields		
	13	15.3: Line Integrals		
	14	15.4: Path Independence & Conservative Vector Fields		
III	L	Multiple Integration	14	Min 1
	15	14.1: Double Integrals		
	16	14.2: Iterated Integrals		
	17	14.3: Double Integrals in Polar Coordinates		
	18	14.4: Applications of Double Integrals		
	19	14.5: Surface Area		

	20	14.6: Triple Integrals		
	21	14.7: Triple Integrals in Cylindrical & Spherical Coordinates		
	22	14.8: Change of Variables in Multiple Integrals		
IV]	Integral Calculus of Fields & Fundamental Theorems	11	Min 15
	23	15.5: Green's Theorem		
	24	15.6: Parametric Surfaces		
	25	15.7: Surface Integrals		
	26	15.8: Divergence Theorem		
	27	15.9: Stoke's Theorem		
V		Open Ended Module – Complex Analysis	12	
	1	Algebra of Complex Numbers, Complex Functions, Complex Differentiation		
	2	Cauchy-Riemann Equations, Analytic Functions		
	3	Complex Line Integrals		
	4	Cauchy's & Cauchy-Goursat Theorems		
	5	Cauchy's Integral Formula, Derivative Formula		
	6	Morera's & Liouville's Theorem, Fundamental Theorem of Algebra		
	7	12.3: Arc Length & Curvature		
	8	12.4: Velocity & Acceleration		
	9	12.5: Tangential & Normal Components		
	10	13.9: Lagrange Multipliers		

. References:

1. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.

2. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.

3. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.

4. Thomas' Calculus, 14th Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.

5. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.

. Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	3	3	1	2
CO 2	3	0	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	√	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1MN102						
Course Title	CALCULUS OF A SINGLE VARIABLE						
Type of Course	MINOR						
Semester	Ι						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Set theory along with	an understanding of the	real number sy	vstem.			
Course Summary	This course provides	a foundational understand	ding of calculu	is concepts: From			
	the beginning section	s students learn about lim	nits (including	one-sided limits			
		, continuity (definitions a					
	intermediate value the	eorem. Modules II and II	I cover differen	ntiation techniques,			
	including tangent line	es, the definition of deriva	atives, rules of	differentiation			
	(product, quotient, ch	ain), implicit differentiati	ion, and advan	ced topics like			
	L'Hopital's Rule for in	ndeterminate forms. Mod	ule IV focuses	on the analysis of			
	functions, discussing concepts such as increasing/decreasing functions,						
	concavity, inflection	concavity, inflection points, and techniques for identifying relative extrema and					
	graphing polynomials	5.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used			
		Level*	Category#				
CO1	Analyse limit, continuity and differentiability of a function	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Apply rules and techniques of differentiation to solve problems, also find limit in indeterminate forms involving transcendental functions	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Draw a polynomial function by analysing monotonicity, concavity and point of inflection using derivatives test	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
# - Fact	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

Text book		Anton, Howard, Irl C. Bivens, and Stephen Davis. <i>Calculus transcendentals</i> . 10 th Edition, John Wiley & Sons, 2021.	s: early	,
Module	Unit	Content	Hrs 60	External Marks (70)
		Fundamentals of Limits and Continuity		
	1	Section 1.1: Limits (An Intuitive Approach) - Limits, One-Sided Limits, The Relationship Between One- Sided and Two Sided Limits		
	2	Section 1.2: Computing Limits - Some Basic Limits, Limits of Polynomials and Rational Functions as $x \rightarrow a$		
	3	Section 1.2: Computing Limits - Limits involving Radicals, Limits of Piecewise-Defined Functions		
Ι	4	Section 1.3: Limits at Infinity; End Behaviour of a Function Limits of Rational Functions as $x \to \pm \infty$ - A Quick Method for Finding Limits of Rational Functions as $x \to +\infty$ or $x \to -\infty$	14	Min.15
	5	Section 1.5: Continuity - Definition of Continuity, Continuity on an interval, Some Properties of Continuous Functions,		
	6	Section 1.5: Continuity - Continuity of Polynomials and Rational Functions, Continuity of Compositions, The Intermediate- Value Theorem.		
		Differentiation		
	7	Section 2.1: Tangent Lines and Rates of Change - Tangent lines, Slopes and Rate of Change		
	8	Section 2.2: The Derivative Function - Definition of the Derivative Function-Topics up to and including Example 2.		
П	9	Section 2.3: Introduction to Techniques of Differentiation - Derivative of a Constant, Derivative of Power Functions, Derivative of a Constant Times a Function, Derivatives of Sums and Differences, Higher Derivatives	14	Min.15
	10	Section 2.4: The Product and Quotient Rules - Derivative of a Product, Derivative of a Quotient, Summary of Differentiation Rules.		
	11	Section 2.5: Derivatives of Trigonometric Functions - Example 4 and Example 5 are optional		
	12	Section 2.6: The Chain Rule Derivatives of Compositions, An Alternate Version of the Chain Rule, Generalized Derivative Formulas		
		Differentiation contd :		
	13	Section 3.1: Implicit Differentiation - Implicit Differentiation (sub section)	10	
	14	Section 3.2: Derivatives of Logarithmic Functions -		

	1			
		Derivative of Logarithmic Functions (sub section)		
		Logarithmic Differentiation, Derivatives of Real Powers of x		
		Section 3.3: Derivatives of Exponential and Inverse		
III	15	Trigonometric Functions -		
		Derivatives of Exponential Functions		
		Section 3.3: Derivatives of Exponential and Inverse		
	16	Trigonometric Functions -		Min.15
		Derivatives of the Inverse Trigonometric Functions		
		Section 3.6: L'Hopital's Rule; Indeterminate Forms -		
	17	Inderminate Forms of Type 0/0, Indeterminate Forms of		
		Type $^{\infty}/_{\infty}$		
		Section 3.6: L'Hopital's Rule; Indeterminate Forms -		
	18	Inderminate Forms of Type $0 \cdot \infty$, Indeterminate Forms of		
		Type $\infty - \infty$		
		Applications of Differentiation		
		Section 4.1: Analysis of Functions I: Increase, Decrease, and		
	19	Concavity -		
		Increasing and Decreasing Functions		
		Section 4.1: Analysis of Functions I: Increase, Decrease, and		
	20	Concavity -		
		Concavity, Inflection Points		
IV		Section 4.2: Analysis of Functions II: Relative Extrema;	10	Min 15
	21	Graphing Polynomials -		IVIIII 15
	21	Relative Maxima and Minima, First Derivative Test, Second		
		Derivative Test		
		Section 4.2: Analysis of Functions II: Relative Extrema;		
	22	Graphing Polynomials		
		Geometric Implications of Multiplicity, Analysis of		
		Polynomials		
		Module V (Open Ended)		
		Infinite Limits		
		Differentiability, Relation between Derivative and		
		Continuity		
		Parametric Equations, Parametric Curves		
		Inverse Trigonometric Functions and their derivatives	12	
V		Taylor series expansion of functions		
		Maclaurin series of sin x, cos x, tan x, $log(1+x)$, $log(1-x)$ etc		
		Binomial expansion of $\frac{1}{(1+x)}$, $\frac{1}{(1-x)}$, $\frac{1}{\sqrt{1+x}}$, $\frac{1}{\sqrt{1-x}}$ etc		
	<u> </u>	Different coordinate systems: - Cartesian, Spherical, and	1	
		Cylindrical coordinates		
		Conic sections with vertex other than the origin		
		Indeterminate Forms of Type 0^0 , ∞^0 , 1^∞		
		Graphing Rational Functions		
Refere	nces			I
Keiere				
	1	Calculus and Analytic Geometry, 9 th Edition, George B. The	omas J	r and Ross
		L. Finney, Pearson Publications.		
	2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010)	ISBN-1	13: 978-0-
		534-46579-7.		

3	Marsden, Jerrold, and Alan Weinstein. Calculus I. Springer Science & Business Media, 1985.
4	Stein, Sherman K. <i>Calculus in the first three dimensions</i> . Courier Dover Publications, 2016.

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	2
CO 2	3	1	3	1	2	1	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	✓	~	✓
CO 3	~	√	✓	~	✓

Programme	B. Sc. Mathematics H	B. Sc. Mathematics Honours					
Course Code	MAT2MN102						
Course Title	CALCULUS AND	CALCULUS AND MATRIX ALGEBRA					
Type of Course	MINOR						
Semester	II						
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus						
Course Summary		antiderivatives, the indefir		U			
	-	mental Theorem of Calc					
		valuating definite integral	•	, U			
		I finding the length of					
		variables, including notat					
	partial derivatives for functions of two or more variables. Course also focuses on						
		eterminants, eigenvalue		ncluding complex			
	eigenvalues), and orth	hogonal matrices and thei	ir properties.				

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used			
CO1	Demonstrate proficiency in applying calculus techniques to solve analytical and geometrical problems involving indefinite and definite integrals, substitution methods, and integration by parts.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO2	Apply multivariable calculus concepts, including functions of multiple variables, limits, continuity, and partial derivatives, to model and analyse real-world phenomena and mathematical problems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
CO3	Apply linear algebra principles, such as matrix operations, determinants, and eigenvalue problems, to analyze and solve systems of equations and geometric problems.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam			
# - Fact	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 						

	1. Howard Anton, Bivens and Stephen Davis, Calculus- Early Transcendentals (10th Edition).						
Text	2	00 P D	antlatt				
Book	2	 Advanced Engineering Mathematics(6/e): Dennis G Zill Jon Learning, LLC (2018) ISBN: 9781284105902 	es & B	artiett,			
			Hrs	External			
Module	Unit	Content	60	Marks (70)			
		Indefinite and Definite Integrals	12	Min 15			
	1	Section 5.2: The Indefinite Integral - Antiderivatives, The					
		Indefinite Integral, Integration Formulas, Properties of the					
		Indefinite Integral, Integral Curves					
	2	Section 5.3: Integration by Substitution -					
		u-Substitution, Easy to Recognize Substitutions, Less					
Ι		Apparent Substitutions					
	3	Section 5.5: The Definite Integral -					
		Riemann Sums and the Definite Integral, Properties of the					
	4	Definite Integral.					
	4	Section 5.6: The Fundamental Theorem of Calculus -					
		The Fundamental Theorem of Calculus (sub section), The					
		Relationship Between Definite and Indefinite Integrals. Techniques and Applications	13	Min 15			
		Section 5.8: Average Value of a Function and its Applications	15	IVIII 13			
	5	- Average Value of a Continuous Function (up to and					
		including Example 2 only)					
		Section 5.9: Evaluating Definite Integrals by Substitution -					
	6	Two Methods for Making Substitutions in Definite Integrals					
		Section 6.1: Area Between Two Curves -					
	1	Area Between $y = f(x)$ and $y = g(x)$, Reversing the Roles					
т		of x and y					
II	8	Section 6.4: Length of a Plane Curve - Arc Length					
		Section 7.2: Integration by Parts - The Product rule and					
	9	Integration by Parts, Guidelines for Integration by Parts,					
		Repeated Integration by Parts					
		Section 7.5: Integrating Rational Functions by Partial					
	10	Fractions - Partial Fractions, Finding the form of a Partial					
	10	Fraction Decomposition, Linear Factors, Quadratic Factors					
		(Example 4 is optional), Integrating Improper Rational					
		Functions. Multivariable Calculus	10	Min 15			
		Section 13.1: Functions of Two or More Variables:	10	IVIIII 15			
	11	Notation and Terminology, Graphs of Functions of Two					
	11	Variables.					
III		Section 13.1: Functions of Two or More Variables:					
	12	Level Curves, Level Surfaces.					
	13	Section 13.2: Limits and Continuity - Limit along Curves					
	14	Section 13.2: Limits Continuity - Continuity					
	15	Section 13.3: Partial Derivatives -	1				

		Partial Derivatives of Functions of Two Variables, The		
		Partial Derivative Function, Partial Derivative Notation,		
		Implicit Partial Differentiation, Partial Derivatives and		
		Continuity		
		Section 13.3: Partial Derivatives		
	16	Partial Derivatives of Functions with more than Two		
		Variables, Higher order Partial Derivatives, Equality of Mixed Partials.		
		Linear Algebra Essentials	13	Min 15
	17	Section 8.1: Matrix Algebra	10	
	18	Section 8.2: Systems of Linear Algebraic Equations		
		Section 8.8: The Eigenvalue Problem -		
	19	Topics up to and including Example 4		
IV		Section 8.8: The Eigenvalue Problem -		
	20	Topics from Complex Eigenvalues onwards		
		Section 8.10: Orthogonal Matrices -		
	21	Topics up to and including Theorem 8.10.3		
	22	Section 8.10: Orthogonal Matrices -		
	22	Topics from Constructing an Orthogonal Matrix onwards		
		Module V (Open Ended)	12	
		Fundamental theorems in Vector Calculus such as Green's		
		theorem, divergence theorem, and the Stokes' theorem.		
		Trigonometric Substitutions		
		Integrating Trigonometric Functions		
		Volume of Solids of Revolution, Area of Surfaces of		
V		Revolution		
		The Chain Rule in Partial Differentiation		
		Directional Derivatives and Gradients, Tangent Planes and		
		Normal Vectors		
		Basics of Vector Calculus including the differential operators		
		such as gradient, divergence and curl.		
		Simpsons Rule, Trapezoidal rule in Numerical Integration		
D 4		Algebra of Complex Numbers		
Refere		Colorian and Analytic Connect Ord Elitic Connect		- ID I
	1	Calculus and Analytic Geometry, 9 th Edition, George B. Tho	mas Jr	and Ross L.
	2	Finney, Pearson Publications. Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) I	CDN 1	2.078.0
		534-46579-7.	SDIN-1	13. 7/0-0-
	3	Marsden, Jerrold, and Alan Weinstein. <i>Calculus I</i> . Springer Sc	ience	& Business
	5	Marsden, seriola, and Man Weinstein. Calculus 1. Springer Se Media, 1985.		e Dusiness
	4	Stein, Sherman K. Calculus in the first three dimensions. Cour	ier Do	ver
		Publications, 2016.	20	-
	5	Kreyszig, Erwin. Advanced Engineering Mathematics 9th Edit	ion wi	th Wilev Plus
	-	<i>Set.</i> Vol. 334. US: John Wiley & Sons, 2007.		· · · · · ·
	6	Elementary Linear Algebra, Applications version, 9 th edition,	Howa	rd Anton
		and Chriss Rorres		
		ional tonics are exempted for end semester examination 2) I		A N A

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	2	1	2	0	0
CO 3	2	1	2	1	2	1	2	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics H	Ionours						
Course Code	MAT3MN202							
Course Title	DIFFERENTIAL E	QUATIONS AND FOU	RIER SERIES	8				
Type of Course	Minor							
Semester	III							
Academic Level	200-299							
Course Details	Credit Lecture/Tutorial Practicum Total Hours							
	per week per week							
	4	4	-	60				
Pre-requisites	Basic Calculus and fa	amiliarity with Real Num	bers					
Course Summary		s are introduced to vario						
		rable, exact equations, ar						
	*	near equations, both hor	U	e				
	Module III introduces Fourier series, including trigonometric series, Fourier							
	cosine and sine series, and half-range expansions. Module IV transitions into							
	algebra of complex numbers, , and functions of complex variables, including							
	analytic functions an	d the Cauchy-Riemann eo	quations, which	are fundamental in				
	complex analysis.							

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Apply various methods, such as separation of variables, linear, and exact equations, integrating factors, and substitution, to solve differential equations, including those with constant coefficients and Cauchy-Euler equations.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO2	Analyse and solve partial differential equations, including separable ones, and comprehend Fourier series and their applications in solving differential equations and understanding periodic function	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam				
CO3	CO3Apply complex number theory, including arithmetic operations, polar forms, powers, roots, sets in the complex plane, functions of a complex variable, and Cauchy-Riemann equations, to analyze and solve real-world problems in various fields.Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam							
# - Fact	nember (R), Understand (U), Apply (Ap), Analy ual Knowledge(F) Conceptual Knowledge (C) edge (M)							

Text Book		nced Engineering Mathematics(6/e) : Dennis G Zill, Jones & ning, LLC(2018)ISBN: 978-1-284-10590-2	z Bartl	ett,
Module	Unit	Content	Hrs 60	External Marks (70)
		Foundations of Differential Equations		
	1	Introduction to Differential Equations Section 1.1: Definitions and Terminology		
		Introduction, A Definition, Classification by Type, Notation, Classification by Order, Classification by Linearity, Solution.		
I	2	Section 2.2: Separable Equations		
	3	Introduction, A Definition, Method of Solution. Section 2.3: Linear Equations	-	
	5	Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem	10	
	4	Section 2.4: Exact Equations		Min 15
		Introduction, Differential of a Function of Two Variables (Definition 2.4.1 and Theorem 2.4.1 only), Method of Solution.		
	5	Section 2.4: Exact Equations Integrating Factors		
	6	Section 2.5: Solutions by Substitutions Bernoulli's Equation		
		Linear Differential Equations		
	7	Section 3.1: Theory of Linear Equations 3.1.2 Homogenous Equations, Linear Dependence and Independence, Solutions of Differential Equations,		
п	8	Section 3.1: Theory of Linear Equations 3.1.3 Nonhomogeneous Equations, Complementary Function		
	9	Section 3.3: Homogeneous Linear Equations with Constant Coefficients	11	Min 15
	10	Introduction, Auxiliary Equation. Section 3.4: Undetermined Coefficients Introduction, Method of Undetermined Coefficients (Topics up to and including Example 4.)	_	
	11	Section 3.6: Cauchy-Euler Equations Cauchy-Euler Equation (Second Order Only), Method of Solution.		
		Fourier Series		
	12	Section 12.2: Fourier Series Trigonometric Series (Definition 12.2.1 onwards), Convergence of a Fourier Series, Periodic Extension		Min 15
III	13	Section 12.3: Fourier Cosine and Sine Series Introduction, Even and Odd Functions, Properties, Cosine and Sine Series (Definition 12.3.1 onwards).	13	
	14	Section 12.3: Fourier Cosine and Sine Series Half-Range Expansions.		

r	1			
		Section 13.1: Separable Partial Differential Equations		
	15	Introduction, Linear Partial Differential Equation, Solution of		
		a PDE, Separation of Variables.		
	16	Section 13.1: Separable Partial Differential Equations		
	10			
		Introduction to Complex Analysis		
		Section 17.1: Complex Numbers		
	17	Introduction, A definition, Terminology, Arithmetic		
		Operations, Conjugate, Geometric Interpretation		
		Section 17.2: Powers and Roots		
	18	Introduction, Polar Form, Multiplication and Division,		
	10 Classification of Equations. Introduction to Complex Analysis 20 Section 17.1: Complex Numbers 17 Introduction, A definition, Terminology, Arithmetic Operations, Conjugate, Geometric Interpretation Section 17.2: Powers and Roots 18 Introduction, Polar Form, Multiplication and Division, Integer Powers of z. 19 20 Section 17.2: Powers and Roots. 14 20 Section 17.3: Sets in the Complex Plane Introduction, Terminology. 14 21 Introduction, Functions of a Complex Variable 14 21 Introduction, Functions of a Complex Variable, Limits and Continuity, Derivative, Analytic Functions. 12 22 Introduction, A Necessary Condition for Analyticity, Harmonic Functions, Harmonic- Conjugate Functions. 12 22 Initial Value Problems 12 23 Intitial Value Problems 12 24 Initial Value Problems 12 25 Solving DE with the Runge-Kutte Method 14 26 Interpolation, Extrapolation 12 27 Interpolation, Extrapolation 12 28 Operation of Parameters in solving DE 12 <td< td=""><td></td></td<>			
	10	Section 17.2: Powers and Roots		
IV	19			
	•			Min 15
	20	1		iley
	21			Min 15
		ntinuity, Derivative, Analytic Functions.		
	22	· ·		
			12	
			12	
V				
v				
		Fourier Transform		
Refere	ences			
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 8th Editi	on, W	lev
	Student Edition.		,	5
	2	Mathematics For Engineers and Scientist, Alan Jeffrey, Sixth E	Edition	
	3	Complex Analysis A First Course with Applications (3/e), Den	nis Zi	ll & Patric
	_	Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-94		
			-	
1				

Note: Proofs of all the results are also exempted for the end semester exam.

Mapping of COs wit	th PSOs and POs :
--------------------	-------------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	3	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	\checkmark	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1MN103						
Course Title	BASIC CALC	ULUS					
Type of Course	Minor						
Semester	Ι						
Academic	100 – 199						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites		ry including functions and t					
Course		vides a comprehensive expl					
Summary		begins with fundamental co					
		ns, laying the groundwork for					
		ion techniques, including pr					
		derivatives of inverse funct					
		as Rolle's and Mean Value					
		Module IV explores integral calculus, covering the fundamental theorem of					
		rical integration techniques					
	· ·), and introduces hyperbolic	e functions and	their derivatives and			
	integrals.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Apply graphical analysis skills to mathematical models:	Ap	C	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Evaluate and solve calculus problems involving limits and continuity	Е	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Apply differentiation and integration techniques to analyse functions:	Ар	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive					
Knowled	U (<i>i</i>) I			6 ()		

Text Book		Calculus: Early Transcendental Functions (6edn), Ron Larson Edwards Cengage Learning ISBN-13: 978-1-285-77477-0.	and Bru	ice
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Foundations of Calculus: Graphs, Functions, and Limits		
	1	A quick review of sections 1.1 and 1.2 (not for external exam)		
		Section 1.3 – Functions and their Graphs		
	2	Section 1.5: Inverse Functions -		
		Inverse Functions, Existence of an Inverse Function		
	3	Section 1.6: Exponential and Logarithmic Functions -		
Ι		Exponential Functions, The Number <i>e</i> , The Natural Logarithmic Function		
1	4	Section 2.2: Finding Limits Graphically and Numerically -	13	
		An Introduction to Limits, Limits That Fail to Exist, A Formal		Min 15
		Definition of Limit (examples are optional topics)		
	5	Section 2.3: Evaluating Limits Analytically -		
		Properties of Limits, A Strategy for Finding Limits,		
	6	Section 2.3: Evaluating Limits Analytically -		
		Dividing Out Technique, Rationalizing Technique, The Squeeze		
		Theorem		
		Continuity, Derivatives, and Differentiation Rules		
	7	Section 2.4: Continuity and One-Sided Limits -		
		Continuity at a Point and on an Open Interval, Properties of		
	8	Continuity, The Intermediate Value Theorem. Section 3.1: The Derivative and the Tangent Line Problem -		
	0	The Derivative of a Function, Differentiability and Continuity		
	9	Section 3.2: Basic Differentiation Rules and Rates of Change – The		
	,	Constant Rule, The Power Rule, The Constant Multiple Rule, The		
II		Sum and Difference Rules	12	
	10	Section 3.2 : Basic Differentiation Rules – rest of the section.		Mn 15
	11	Section 3.3: Product and Quotient Rules and Higher Order		_
		Derivatives -		
		The Product Rule, The Quotient rule, Higher- Order Derivatives		
	12	Section 3.4 The Chain Rule.		
	13	Section 3.5: Implicit Differentiation		
		Implicit and Explicit Functions, Implicit Differentiation,		
		Logarithmic Differentiation		
	Ар	plications of Derivatives: Extrema, Concavity, and Curve Sketching		
	14	Section 4.1: Extrema on an Interval -		
		Extrema of a Function, Relative Extrema and Critical Numbers,		Min 15
		Finding Extrema on a Closed Interval		
Ш	15	Section 4.2: Rolle's Theorem and The Mean Value Theorem -		
		Rolle's Theorem, The Mean Value Theorem	12	
	16	Section 4.3: Increasing and Decreasing Functions and The First		
		Derivative Test -		
	1 -	Increasing and Decreasing Functions, The First Derivative Test		
	17	Section 4.4: Concavity and the Second Derivative Test -		

		Concavity, Points of Inflection, The Second Derivative Test		
	18	Section 4.6: A summary of Curve Sketching -		
		Analyzing the Graph of a Function		
		Integral Calculus: Fundamental Theorems and Applications"		
	19	Section 5.1: Antiderivatives and Indefinite Integration –		
		Antiderivatives, Basic Integration Rules, Initial Conditions and		
		Particular Solutions.		
	20	Section 5.3: Reimann Sums and Definite Integrals – Reimann		
117		Sums, Definite Integrals, Properties of Definite Integrals.		
IV	21	Section 5.4: The Fundamental Theorem of Calculus -	11	Min 15
		The Fundamental Theorem of Calculus, The Mean Value Theorem		
		for Integrals.		
	22	Section 5.4: The Fundamental Theorem of Calculus -		
		Average Value of a Function, The Second Fundamental Theorem		
		of Calculus, Net Change Theorem		
		Open Ended		
	One	Sided Limits and Discontinuity, Derivatives of Inverse Functions,		
V	Deriv	vatives of Trigonometric functions, Limits at Infinity and Horizontal		
v	Asyn	nptotes, Numerical Integration, Area problems using Riemann Sums,	12	
	Hype	rbolic Functions.		
Referen	ces:			
1	I. Calc	ulus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.		

- 2. Calculus & Analytic Geometry, (9/e), George B. Thomas & Ross L. Finney, Pearson Publications
- 3. Calculus, (7/e), Howard Anton, Biven, & Stephen Davis, Wiley India
- 4. Calculus, (7/e)., Howard Anton, Biven, & Stephen Davis, Wiley India.
- 5. Calculus: Early Transcendentals, (4/e), Dennis G. Zill and Warren S. Wright

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.,

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	1	3	1	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B.Sc. Mathema	B.Sc. Mathematics Honours				
Course Code	MAT2MN103	MAT2MN103				
Course Title	ANALYSIS A	ND SOME COUNTING P	RINCIPLES			
Type of Course	Minor					
Semester	II					
Academic	100 - 219	100 - 219				
Level						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Basic Calculus	and familiarity with Real N	umber system.			
Course		overs fundamental topics				
Summary	beginning with	sequences and series in Me	odule I, explori	ng convergence tests		
	like the nth-terr	n test, comparison tests, and	l alternating ser	ies. Module II delves		
	into complex n	umbers and functions, disc	ussing the arith	metic and geometric		
	properties of c	omplex numbers, along wi	th polar and e	xponential forms. In		
	Module III, the	focus shifts to limits, contin	uity, and differe	entiability of complex		
		iding the Cauchy-Riemann				
	Finally, Modul	e IV introduces counting	principles, inc	luding permutations,		
	combinations, t	he pigeonhole principle, and	d basic element	s of probability.		

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used		
CO1	Describe and apply convergence tests for sequences and series.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO2	Demonstrate proficiency in manipulating complex numbers and functions.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
CO3	Evaluate limits, continuity, and differentiability of real and complex functions.	E	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam		
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive					
Knowle	dge (M)			_		

Text B		 Calculus: Early Transcendental Functions (6/e), Ron Larso Edwards, Cengage Learning ISBN 13: 978-1-285-77477-0. Complex Analysis A First Course with Applications (3/e), E Patric Shanahan Jones and Bartlett, Learning (2015) ISBN Discrete Mathematical Structures (6/e), Bernard Kolman, I Sharon C. Ross, Pearson ISBN 978-93-325-4959-3)ennis Z 1-4496-	ill & 9461-6 Busby,
Module Uni		Content	Hrs (48 +12)	Ext. Marks (70)
		Sequences and Series (Text 1)		
	1	Section 9.1: Sequences - Sequences (sub section), Limit of a Sequence, Monotonic Sequences and Bounded Sequences.		
	2	Section 9.1: Sequences Monotonic Sequences and Bounded Sequences		
Ι	3	Section 9.2: Series and Convergence - Infinite Series, Geometric Series, nth-Term Test for Divergence	13	Min
	4	Section 9.3: The Integral Test and p-Series - The Integral Test, p-series and Harmonic Series	10	15
	5	Section 9.4: Comparisons of Series - Direct Comparison Test, Limit Comparison Test		
	6	Section 9.5: Alternating Series - Alternating Series (sub section), Alternating Series Remainder, Absolute and conditional Convergence		
		Complex Numbers (Text 2)		
	7	Section 1.1: Complex numbers and their Properties - The Imaginary Unit, Terminology, Arithmetic Operations, Zero and Unity, Conjugate, Inverses		
	8	Section 1.2: Complex Plane - Complex Plane, Vectors, Properties, Distance Again, Inequalities		
II	9	Section 1.3: Polar Form of Complex Numbers - Polar Form, Principal Argument, Multiplication and Division, Integer Powers of z, de Moivre's Formula	12	Min
	10	Section 1.4: Powers and Roots - Roots, Principal nth Root	13	15
	11	Section 1.5: Sets of Points in the Complex Plane - Circles, Disks and Neighborhoods, Open Sets, Annulus, Domain, Regions, Bounded Sets		
	12	Section 2.1: Complex Functions - Introduction, Function, Real and Imaginary Parts of a Complex Function, Exponential Function		
		Complex Analysis (Text 2)		
III	13	Section 3.1: Limits and Continuity - Introduction, Real Limits, Complex Limits (definition only), Real Multivariable Limits (Example 2 and Problems Using Epsilon Delta Definition are optional)		
	14	Section 3.1: Limits and Continuity -		

		Continuity of Real Functions, Continuity of Complex Functions	12	Min
		(Example 6 is optional), Properties of Continuous Functions.	12	15
	15	Section 3.2: Differentiability and Analyticity -		
	10	Introduction, The Derivative, Rules of Differentiation		
	16	Section 3.2: Differentiability and Analyticity -		
		Analytic Functions, Entire Functions, Singular Points, An Alternate		
		Definition of $f'(z)$.		
	17	Section 3.3: Cauchy -Riemann Equations -		
		Introduction, A Necessary Condition for Analyticity, A Sufficient		
		Condition for Analyticity		
	18	Section 3.4: Harmonic Functions		
		Introduction, Harmonic Functions, Harmonic Conjugate Functions		
		Introduction to Counting and Probability Theory (Text 3)		
	19	Chapter 3: Counting		
		Section 3.1 - Permutations		
	20	Chapter 3: Counting		
IV		Section 3.2 - Combinations	10	Min 15
	21	Chapter 3: Counting	10	
		Section 3.3 – Pigeonhole Principle		
	22	Chapter 3: Counting		
		Section 3.4 – Elements of Probability		
		Open Ended		
	Patter	rn Recognition for Sequences, Rearrangement of Series, The Ratio		
\mathbf{V}	Test,	The Root Test, Taylor Polynomials and Approximations, Power	12	
	Serie	s, Taylor Series, Maclaurin Series, Complex Functions as Mappings,	14	
	Linea	ar Mappings, Special Power Functions, Relations and Di Graphs.		
Referen				
		Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.		
		& Analytic Geometry, (9/e)., George B. Thomas & Ross L. Finney, Pea	irson	
	ications			
		(7/e), Howard Anton, Biven, & Stephen Davis, Wiley India.		
		Early Transcendentals, (4/e)., Dennis G. Zill and Warren S. Wright.		
		l Engneering Mathematics, (10/e), Erwin Kreyszig, John Wiley and Sor		
	-	Variables and Applications, (8/e), James Brown and Ruel Churchill, Mo	cGraw-H	111
		l (UK) Ltd		
7 Die	screte A	Aathematics, (6/e), Richard Johnsonbaugh, Pearson		

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	1	1	2	0	0
CO 3	2	1	2	1	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	\checkmark	\checkmark	~	~	\checkmark

Programme	BSc Mathematics Honours							
Course Title	MATRIX ALGEBRA AND VECTOR CALCULUS							
Course Code	MAT3MN203							
Type of Course	Minor							
Semester	III							
Academic Level	200 - 299							
Course Details	Credit Lecture/Tutorial Practical Total Hours							
Course Details	Crean	10tul 110tul5						
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Calculus and	d familiarity with Euclidian	Geometry.					
Course	This course cover	s fundamental concepts in	vectors, vector	or calculus, and				
Summary	matrices. Students	will explore vectors in 2-sp	ace and 3-space	e, including dot				
	and cross products,	as well as lines and planes	in 3-space. The	e vector calculus				
	portion includes ve	portion includes vector functions, partial and directional derivatives, tangent						
	planes, normal line	planes, normal lines, curl, divergence, line integrals, double integrals, surface						
	integrals, and tripl	e integrals. Additionally,	the course del	ves into matrix				
	algebra, systems of	linear equations, matrix ran	lk, and the eige	nvalue problem.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools			
		Level*	Category#	used			
CO1	Discuss the geometry of Vectors in	U	С	Internal Exam/			
	two- and three-dimensional spaces			Assignment/ Seminar/			
				Viva / End Sem Exam			
CO2	Discuss the basic concepts of	Ap	Р	Internal			
	matrices, and evaluate the solutions			Exam/Assignment/			
	of system of linear equations using			Seminar/ Viva / End			
	matrices.			Sem Exam			
CO3	Describe the idea of eigen values	U	С	Internal Exam/			
	and eigen vectors.			Assignment/ Seminar/			
				Viva / End Sem Exam			
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) #						
- Fact	ual Knowledge(F) Conceptual Knowl	edge (C) Pro	cedural Knowl	edge (P) Metacognitive			
Know	ledge (M)			_			

Module	Unit	Content	Hrs (60)	Ext. Marks (70)
Ι		Vectors		
	1	Section 7.1-Vectors in 2 -Space (quick review)		
	2	11	Min. 15	
	3	11	101111. 1.	
	4			
	5	Section 7.5- Lines and Planes in 3-space- upto and including Example 6		
	6	Section 7.5- Lines and Planes in 3-space- From Planes: Vector Equation onwards		
II				
	7	Section 9.1 – Vector Functions		
	8	Section 9.4 – Partial Derivatives		
	9	Section 9.5 – Directional Derivative – upto and including Example 4.	15	Min. 15
	10	Section 9.5 – Functions of Three Variables onwards.		
	11	Section 9.6 – Tangent Planes and Normal Lines – upto and including Example 4		
	12	Section 9.6 – Topics from Normal Line onwards		
	13	Section 9.7 – Curl and Divergence -		
III		Vector Calculus – contd.		
	14	Section 9.8 – Line Integrals – upto and including Example 5.		Min. 1

		1	1	
	15	Section 9.10 – Double Integrals – upto and including Example 2	12	
	16	Section 9.13 – Surface Integrals – upto and including Example 4		
	17			
IV		Matrices		
	18	Section 8.1- Matrix Algebra.		
	19	10	Min. 15	
	20			
	21	Section 8.3 -Rank of a Matrix.		
	22			
V		Open Ended	12	
		Vector Spaces, Gram- Schmidt Orthogonalization (for instance, refer sections 7.6 and 7.7) Green's Theorem, Stocke's Theorem and Divergence Theorem (for instance, refer sections 9.12, 9.14 and 9.16) Complex Eigen Values Eigen Values and Singular Matrices. Eigen Values and Eigen Vectors of inverse of A Improper Integrals, Beta and Gama Functions		
		1. Calculus and Analytic Geometry (9 th Edn), George B		
		Thomas, Jr. and Ross L Finney, Addison -Wesley Publishing Company.		
		 A Freshman Honors Course in Calculus and Analytic 		
		Geometry, Emil Artin (Author), Marvin J Greenberg		
		(Foreword).		
	-		-	

	3. Advanced Engineering Mathematics (10 th Edn), Erwin	
	Kreyszig, John Wiley and Sons.	
	4. Improper Riemann Integrals: Ioannis M. Roussos CRC	
	Press by Taylor & Francis Group, LLC(2014) ISBN:	
	978-1-4665-8808-0 (ebook -pdf)	

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the
results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	√	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B.Sc Mathematics Honours							
Course Code	MAT1MN104	MAT1MN104						
Course Title	MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS							
Type of Course	Minor	Minor						
Semester	Ι							
Academic Level	100 - 199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Higher Second	ary Mathematics.	• •					
Course Summary	covering fund quantifiers. It i and cardinality	This course explores mathematical logic, set theory, and combinatorics, covering fundamental ideas like propositions, logical equivalences, and quantifiers. It introduces set theory concepts such as sets, operations with sets, and cardinality. Additionally, it delves into functions and matrices, along with opics like permutations, combinations, and discrete probability in						

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Analyse propositional logic and	An	Р	Internal
	equivalences			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO2	Apply set theory and operations	Ap	С	Internal
				Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO3	Implement functions, matrices,	Ар	Р	Internal
	and combinatorics			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
	emember (R), Understand (U), Ap ctual Knowledge(F) Conceptual Know			

Knowledge (M)

Module	Unit	Content	Hrs	Ext. Marks
			(48	
			+12)	(70)
Ι		Mathematical Logic		
	1	1.1 Propositions: Conjunction, Disjunction.		
	2	1.1 Propositions: Converse, Inverse and Contrapositive.		
	3	1.1 Propositions: Biconditional Statement, Order of Precedence, Tautology, Contradiction and Contingency (Switching network and Example 1.16 are optional).		
	4	1.2 Logical Equivalences (Equivalent Switching Networks, Example 1.23, Fuzzy Logic and Fuzzy Decisions are optional)	15	Min. 15
	5	1.3 Quantifiers (Example 1.28, De Morgan's Laws and example 1.29 are optional)		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)		
II		Set Theory		
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).		
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).		
	9	2.2 Operations with Sets – up to and including example 2.21.	12	Min. 15
	10	2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).		
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).		
III		Functions and Matrices		

	12 13 14 15	 3.1. The Concept of Functions - up to and including example 3.2 3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional). 3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional). 3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional). 	10	Min. 15
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).		
IV		Combinatorics and Discrete Probability		
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)		
	18	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)		
	19	6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)	11	Min. 15
	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)		
	21	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)		
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)		
V			12	
	1.	Open Ended Basic calculus concepts such as limits, continuity, differentia integration. Relations and Digraphs, Conditional Probability, theorem of Probability, Dependent and Independent Events, Distributions, Correlation and Regression, Bisection Method Method, Gauss-Jordan Method.	, Multip Probab	olication ility

References:

- 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
- 2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
- 3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	✓	~	\checkmark
CO 3	\checkmark	√	~	~	\checkmark

Programme	B.Sc Mathematics Honours							
Course Code	MAT2MN104							
Course Title	GRAPH THE	GRAPH THEORY AND AUTOMATA						
Type of Course	Minor							
Semester	II							
Academic Level	100 - 199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Higher Second	ary Mathematics						
Course	This course int	roduces students to Graph Th	neory and Autor	mata, covering				
Summary	topics such as	graphs, adjacency matrice	s, and isomorp	ohic graphs in				
	Module I. In I	Module II, it explores Euler	ian and Hamil	tonian graphs,				
	including path	s, cycles, and connected gr	aphs. Module	III focuses on				
	Planar Graphs	Planar Graphs, Graph Coloring, Trees, and Spanning Trees. Finally,						
	Module IV d	lelves into Automata, cov	ering concepts	s like formal				
	languages, gran	mmars, and finite state autom	nata.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Graph Structures and	Е	С	Internal
	Properties			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO2	Apply Algorithms to Eulerian and	Ap	Р	Internal
	Hamiltonian Graphs			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO3	Explore Formal Languages and	Е	С	Internal
	Finite State Automata			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
# - I	member (R), Understand (U), Appl Factual Knowledge(F) Conceptual ognitive Knowledge (M)			

Module	Unit	Content	Hrs	Ext. Marks
			(48	
			+12)	(70)
Ι		Graphs		
	1	8.1 Graphs - Graph, Simple Graph (Example 8.3 is optional).		
	2	8.1 Graphs - Adjacency and Incidence, Degree of a Vertex, Adjacency Matrix (Example 8.5 and proof of Theorem 8.2 are optional).		
	3	8.1 Graphs – Subgraph of a Graph.	14	Min. 15
	4	8.1 Graphs - Complete Graph, Cycle and Wheel Graphs (Fibonacci and Paraffins, Lucas and Cycloparaffins are optional).		
	5	8.1 Graphs - Bipartite graph, Complete Bipartite Graph, Weighted Graph (Graphs and Telecommunications, Graphs and Local Area Networks and A Generalised Handshake Problem are optional).		
	6	8.3 Isomorphic Graphs.		
II		Eulerian and Hamiltonian graphs		
	7	8.4 Paths, Cycles and Circuits – Path, Independent Subsets of the Vertex set, Cycle and Circuit (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).	10	Min.
	8	8.4 Paths, Cycles and Circuits – Connected Graphs (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).		15
	9	8.5 Eulerian and Hamiltonian graphs- Eulerian Graph (Proof of theorem 8.7, example 8.26, Algorithm Eulerian graph, example 8.27, Algorithm Eulerian circuit, proof of theorem 8.8, example 8.31).		

	10	8.5 Eulerian and Hamiltonian graphs- Hamiltonian Graph (Knight's tour problem, example 8.34, Travelling Salesperson Problem, Example 8.35 are optional)				
III		Planar Graphs and Trees				
	11	8.6 Planar Graphs- Planar Graph (Proofs of theorems 8.11 and 8.12 are optional).				
	12	8.6 Planar Graphs- Degree of a Rregion, Homeomorphic Graphs.	11	Min.		
	13	8.7 Graph Coloring- Graph Coloring, Chromatic Number, The Four-Color Problem (Example 8.27 is optional).		15		
	14	9.1 Trees- Trees (Proof of theorem 9.1 and 9.2 are optional).				
	15	9.2 Spanning Trees - Spanning Trees, Kruskal's Algorithm for a Spanning Tree.				
IV		Automata				
	16	2.1 The Concept of Sets – Alphabet, Length of a Word, Language, Concatenation.				
	17	11.1 Formal Languages - Equality of Words, Concatenation of Languages (Examples 11.2, 11.3, 11.5 and Proof of Theorem 11.1 are optional).	13	Min.		
	18	11.1 Formal Languages – Kleene Closure.		15		
	19	11.2 Grammars – Grammars, Phase Structure Grammar.				
	20	11.2 Grammars – Derivation and Language.				
	21	11.3 Finite State Automata – up to and including Example 11.30 (Example 11.27 is optional).				
	22	11.3 Finite State Automata – Equivalent Finite State Automata up to and including example 11.35.				
V		Open Ended Module	12			
	-	outer representation of graphs, minimal spanning trees, roote phs and Finite state machines	d trees,			

References:

1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).

2. Discrete Mathematics with Applications (4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).

3. A First Look at Graph Theory, John Clark and Allan Holton, Allied Publishers (1991).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	1	1	0	3	0	0
CO 2	2	1	2	0	1	1	2	0	0
CO 3	2	1	2	0	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	\checkmark	~	\checkmark	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	√	~	~	\checkmark

Programme	B. Sc. Mathematics Honours								
Course Code	MAT3MN204								
Course Title	BOOLEAN ALGEBRA AND SYSTEM OF EQUATIONS								
Type of Course	Minor	Minor							
Semester	III	III							
Academic Level	200-299								
Course Details	Credit	Total Hours							
		per week	per week						
	4	4	-	60					
Pre-requisites	MAT1MN203	and MAT2MN203							
Course Summary	This course comprises four main modules: Lattice, Boolean Algebra, System of Equations, and Eigenvalue and Eigenvectors. Module I introduce concepts like ordered sets and lattices, while Module II explores Boolean Algebra and its applications. Module III covers linear systems of equations, including Gauss elimination and determinants. Finally, Module IV delves into Eigenvalue and Eigenvectors, offering insights into matrix properties and applications.								

Course Outcome

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse Lattices and Boolean Algebra	Е	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply Matrix Operations and Linear Systems	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Investigate Eigenvalue and Eigenvector Problems	An	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
# -]	emember (R), Understand (U), Appl Factual Knowledge(F) Conceptual ognitive Knowledge (M)			

Textbook	 Theory and Problems of Discrete mathematics (3/e), Seymour Lipschutz, Marc Lipson, Schaum's Outline Series. Advanced Engineering Mathematics (10/e), Erwin Kreyzsig, Wiley India. 						
Module	Uni t	Content	Hrs (48 +12)	Ext. Marks (70)			
Ι		Lattice (Text 1)	12	Min 15			
	1	14.2 Ordered set					
	2	14.3 Hasse diagrams of partially ordered sets					
	3	14.5 Supremum and Infimum					
	4	14.8 Lattices					
	5	14.9 Bounded lattices, 14.10 Distributive lattices					
	6 14.11 Complements, Complemented lattices						
II		Boolean Algebra (Text 1)					
	7	15.2 Basic definitions					
	8	15.3 Duality					
	9	15.4 Basic theorems					
	10	15.5 Boolean algebra as lattices					
	11	15.8 Sum and Product form for Boolean algebras					
	12	15.8 Sum and Product form for Boolean algebras - Complete Sum and Product forms					
III		System of Equations (Text 2)	14	Min 15			
	13	7.1 Matrices, Vectors: Addition and Scalar Multiplication					
	14	7.2 Matrix Multiplication (Example 13 is optional)					
	15	7.3 Linear System of Equations- Gauss Elimination					
	16	7.4 Linear Independence- Rank of a matrix- Vector Space (Proof Theorem 3 is optional)					

	T					
	17	7.5 Solutions of Linear Systems- Existence, Uniqueness (Proof of Theorem 1, Theorem 2 and Theorem 4 are optional)				
IV		Eigen Value and Eigen Vectors (Text 2)	12	Min 15		
	18	7.6 Second and Third Order Determinants- up to and including Example 1				
	19	7.6 Second and Third Order Determinants- Third order determinants				
	20	7.7 Determinants- Cramer's Rule (Proof of Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)				
	21 7.8 Inverse of a Matrix- Gauss- Jordan Elimination (Proof Theorem 1, Theorem 2, Theorem 3 and Theorem 4 are optional)					
	22	8.1 The Matrix Eigenvalue Problem- Determining Eigenvalues and Eigenvectors (Proof of Theorem 1 and Theorem 2 are optional)				
V		Open Ended Module	12			
Relation on a set, Equivalence relation and partition, Isomorphic ordered sets, Well- ordered sets, Representation theorem of Boolean algebra, Logic gates, Symmetric, Skew-symmetric and Orthogonal matrices, Linear Transformation.						
References	5:					
1. Howard	Anton	& Chris Rorres, Elementary Linear Algebra: Application (1	1/e) : W	iley		
2. Ron Lar	son, E	dwards, David C Falvo : Elementary Linear Algebra (6/e), H	oughton	Mi_in		
Harcourt P	ublish	ing Company (2009)				
3. Thomas	Koshy	v - Discrete Mathematics with Applications-Academic Press	(2003)			
4. George (2009)	Gratze	r, Lattice theory: First concepts and distributive lattices. Con	urier Co	rporation		

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with	PSOs and POs :
---------------------	----------------

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	1	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathematics	s Honours				
Course Title	MATRIX THEOR	RY				
Course Code	MAT1MN105					
Type of Course	Minor					
Semester	Ι					
Academic Level	100 – 199					
Course Details	Credit Lecture/Tutorial Practical Total Hours					
	per week per week					
4 4 -						
Pre-requisites	Higher Secondary Algebra					
Course Summary	This course provides a comprehensive introduction to linear algebra,					
	focusing on systems of linear equations, matrix algebra, determinants, and					
	Euclidean vector spaces. Through a blend of theoretical concepts and					
	practical application	ons, students will develop a	a strong found	ation in linear		
	algebra techniques	and their uses in various fie	elds.			

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation			
		Level*	Category#	Tools used			
CO1	Understand the fundamental	U	С	Internal			
	operations and concepts of systems of			Exam/Assignme			
	linear equations, including Gaussian			nt/ Seminar/			
	elimination and elementary row			Viva / End Sem			
	operations, leading to an			Exam			
	understanding of matrix algebra						
CO2	Apply the properties of determinants	Ар	Р	Internal Exam/			
	to evaluate them using cofactor			Assignment/			
	expansions and row reduction			Seminar/ Viva/			
	techniques, and comprehend the			End Sem Exam			
	relationships between matrices and						
	determinants.						
CO3	Explore the geometry and properties	An	С	Internal Exam/			
	of Euclidean vector spaces, including			Assignment/			
	norms, dot products, distances,			Seminar/ Viva/			
orthogonality, and the cross product. End Sem Exam							
* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) #							
- Factua	al Knowledge(F) Conceptual Knowledge	(C) Procedur	ral Knowledge	(P) Metacognitive			
Knowle	edge (M)						

Text: Howard Anton and Chriss Rorres, Elementary Linear Algebra (11/e), Applications	
version, Wiley	

System Of Linear Equations Section 1.1: -Introduction to systems of linear equations – up to and including Example 5 Section 1.1: - Rest of the section. 1.2: - Gaussian Elimination – up to Example 5 Section 1.2; - From Example 5 onwards. Section 1.3: - Matrices and Matrix Operations – up to and including Example 7. Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4: - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5: - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
 including Example 5 Section 1.1: - Rest of the section. 1.2: - Gaussian Elimination – up to Example 5 Section 1.2; - From Example 5 onwards. Section 1.3: - Matrices and Matrix Operations – up to and including Example 7. Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4: - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices 	12	
Section 1.1: - Rest of the section. 1.2: - Gaussian Elimination – up to Example 5 Section 1.2; - From Example 5 onwards. Section 1.3: - Matrices and Matrix Operations – up to and including Example 7. Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4: - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
1.2 :- Gaussian Elimination – up to Example 5 Section 1.2; - From Example 5 onwards. Section 1.3: - Matrices and Matrix Operations – up to and including Example 7. Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4: - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5: - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
Section 1.2; - From Example 5 onwards. Section 1.3: - Matrices and Matrix Operations – up to and including Example 7. Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4; - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
Section 1.3: - Matrices and Matrix Operations – up to and including Example 7. Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4; - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
Example 7. Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4; - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
Section 1.3; - Rest of the section. Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4; - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
Matrix Algebra Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4; - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices	12	
 Section 1.4: - Inverses; Algebraic Properties of Matrices - up to and including Example 6. Section 1.4; - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices 		
 including Example 6. Section 1.4; - Properties of inverses onwards – up to and including Example 12. Section 1.4: - Rest of the section. Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional) Section 1.6: - More on Linear systems and Invertible Matrices 		
Section 1.4; - Properties of inverses onwards – up to and including Example 12.Section 1.4: - Rest of the section.Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional)Section 1.6: - More on Linear systems and Invertible Matrices		
Example 12.Section 1.4: - Rest of the section.Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional)Section 1.6: - More on Linear systems and Invertible Matrices		
Section 1.4: - Rest of the section.Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional)Section 1.6: - More on Linear systems and Invertible Matrices		
Section 1.5; - Elementary matrices and a method for finding inverse (Proof of Theorem 1.5.3 is optional)Section 1.6: - More on Linear systems and Invertible Matrices		
(Proof of Theorem 1.5.3 is optional)Section 1.6: - More on Linear systems and Invertible Matrices		
Section 1.6: - More on Linear systems and Invertible Matrices		
•		
(Proofs of all the theorems are optional)		
Section 1.7; - Diagonal, Triangular and Symmetric Matrices (Proof	-	
of theorem 1.7.1 is optional)		
Determinants	12	
Section 2.1 :- Determinants by Cofactor expansions	12	
Section 2.2; - Evaluating determinants by row reduction		
Section 2.3: - Properties of determinants; Cramer's Rule – up to and		
including Theorem 3.2.5 (proofs of all the results are optional).		
Section 2.3;- up to and including Example 7.		
Section 2.3;- rest of the section.(proofs of all the results are		
optional)		
Euclidean Vector Spaces	12	
Section 3.1:- Vectors in 2-space, 3-space and n-space		
Section 3.2:- Norm , dot product and distance in R ⁿ (proofs of all the		
results are optional).		
Section 3.3: - Orthogonality (proofs of all the results are optional).		
Section 3.4:-The geometry of linear systems.Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional)		
Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional) Open Ended Module	latrix	
	results are optional). Section 3.3: - Orthogonality (proofs of all the results are optional). Section 3.4:-The geometry of linear systems. Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional) Open Ended Module	results are optional). Section 3.3: - Orthogonality (proofs of all the results are optional). Section 3.4:-The geometry of linear systems. Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional) Open Ended Module 12 Tix Transformations, Combinatorial approach to determinants, Rank of Matrix

References:

- 1. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.
- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	2
CO 2	3	2	3	1	2	2	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	✓	✓	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours					
Course Code	MAT2MN105	MAT2MN105					
Course Title	VECTOR SPA	CES AND LINEAR TRA	NSFORMATI	ONS			
Type of Course	Minor						
Semester	II						
Academic	100 – 199						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
	per week per week						
	4 4 - 60						
Pre-requisites	Linear Algebra Course in Semester 1 - Vectors and Matrices						
Course	This course delves into advanced concepts in linear algebra, focusing on						
Summary	general vector spaces, basis and dimension, matrix transformations, and						
	eigenvalues and diagonalization. The course builds on foundational linear						
		algebra principles and explores their applications in higher-dimensional					
	spaces and com	plex transformations.					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation					
		Level*	Category#	Tools used					
CO1	Define and apply concepts related to	U	С	Internal Exam/					
	vector spaces, including understanding			Assignment/					
	vector space axioms, subspaces, and			Seminar/ Viva/					
	the solution space of homogeneous			End Sem Exam					
	systems.								
CO2	Explore the concepts of linear	Ар	Р	Internal Exam/					
	independence, coordinates, basis, and			Assignment/					
	dimension within vector spaces,			Seminar/ Viva/					
	including computing basis vectors and			End Sem Exam					
	understanding coordinate systems								
	relative to a basis.								
CO3	Analyse and apply matrix	An	С	Internal Exam/					
	transformations, including basic			Assignment/					
	transformations in R2R2 and R3R3,			Seminar/ Viva/					
	understanding properties of these			End Sem Exam					
	transformations, and exploring								
	concepts related to eigenvalues,								
	eigenvectors, and diagonalization of								
	Amatrices.								
* - Re	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# -								
Factua	al Knowledge(F) Conceptual Knowledge	(C) Procedur	al Knowledge (I	P) Metacognitive					
Know	ledge (M)								

I General Vector Spaces 12 1 Section 4.1: -Real vector spaces – up to and including Example 8. 2 2 Section 4.1: -Reat of the section. 3 3 Section 4.2: - Subspaces (examples 7, 8 are optional) – up to and Example 10. 4 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional) 12 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 12 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 12 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 10 Section 4.5: -Dimension – up to and including Example 3. 12 11 Section 4.9: - Rest of the section from Example 3 (proofs of all the theorems are optional). 12 12 Section 4.9: - Rest of the section. 12 13 Section 4.9: - Rest of the section in R ³ 14 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 15 Section 4.	Hrs E: (60) Ma (7	Content	Unit	Module
2 Section 4.1:- Rest of the section. 3 Section 4.2: - Subspaces (examples 7, 8 are optional) – up to and Example 10. 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 6 Section 4.2: - Rest of the section (Linear transformation view point is optional) 7 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: - Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 11 Matrix Transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 13 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 5.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Figen Values and Bigonalization 18 Section 5.1: - Figen values a	12	General Vector Spaces		Ι
3 Section 4.2: - Subspaces (examples 7, 8 are optional) – up to and Example 10. 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem 4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 11 Basis And Dimension 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: - Nest of the section from Example 3. 11 Section 4.5: - Rest of the section from Example 3. 11 Section 4.9: - Basic matrix transformations in R ² and R ³ -Reflection operators, Projection operators 12 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - Properties of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Eigen Values and Diagonalization 18 Section 5.1: - Eigen Values and eigen vectors – up to Theorem 5.1.3 19 19 Section 5.1: - Rest of the section (Eigen values of general linear transformation	including Example 8.	Section 4.1: -Real vector spaces – up to and including E	1	
Example 10. 4 Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) II Basis And Dimension 6 Section 4.2: - Rest of the section (Linear transformation view point is optional) 7 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). III Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³ - Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 5.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Eigen Values and eigen vectors – up to Theorem 5.1.3 19 18 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional)		Section 4.1:- Rest of the section.		
4.2.3 is optional) 5 Section 4.2: - Rest of the section (Linear transformation view point is optional) 11 Basis And Dimension 12 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 12 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 12 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 10 Section 4.5: - Dimension – up to and including Example 3. 11 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 12 11 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 12 Section 4.9: - Rest of the section. 15 13 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 17 Section 5.1: - Eigen Values and Diagonalization 12 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 20 Section 5.2: - Diagonalization – up to a	optional) – up to and		3	
II Basis And Dimension 12 6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 8 Section 4.4: - rest of the section from Theorem 4.4.1. 10 10 Section 4.4: - rest of the section from Theorem 4.4.1. 10 11 Section 4.5: -Dimension – up to and including Example 3. 11 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 12 12 Section 4.9: - Rest of the section. 12 12 Section 4.9: - Rotation Operators 13 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 14 Section 4.9: - Rotation Operators on R ² (proof of Theorem 4.11.2 is optional) 17 17 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 16 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 18 Section 5.1: - Eigen Values and eigen vectors – up to Theorem 5.1.3 19 19 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 11 <td< td=""><td></td><td>.4.2.3 is optional)</td><td></td><td></td></td<>		.4.2.3 is optional)		
6 Section 4.3: - Linear independence – up to and including Theorem 4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). III Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proof	nsformation view point		5	
4.3.3 7 Section 4.3: - Rest of the section (proofs of all the results are optional). 8 Section 4.4: - Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.5: -Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 11 Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.0: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - Properties of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 5.1.3 is period of Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2:				II
aptional). 8 Section 4.4:- Coordinates and Basis -up to and including Example 5 9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5:-Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 11 Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - Properties of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 17 Section 5.1: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 18 Section 5.1: - Eigen values and Diagonalization 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Rest of the section (Geometric and algebra	nd including Theorem		6	
9 Section 4.4: - rest of the section from Theorem 4.4.1. 10 Section 4.5:-Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). 11 Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 18 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and alge	all the results are	·*	7	
10 Section 4.5:-Dimension – up to and including Example 3. 11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). III Matrix Transformations 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 14 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) IV Eigen Values and Diagonalization 18 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Rest of the section (Geometric and algebraic multiplicity are optional)	nd including Example 5	Section 4.4:- Coordinates and Basis -up to and including	8	
11 Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional). III Matrix Transformations 12 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators 13 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 14 Section 4.9: Rest of the section. 15 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 16 Section 4.10: rest of the section (proofs of theorems are optional) 17 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 18 Section 5.1: - Eigen values and Diagonalization 12 18 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 22 Section 5.2: - Rest of the section (Geometric and algebraic multiplicity are optional) 22	em 4.4.1.	Section 4.4: - rest of the section from Theorem 4.4.1.	9	
III Matrix Transformations 12 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators 13 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 14 Section 4.9: Rest of the section. 15 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 18 Section 5.1:- Eigen values and Diagonalization 12 18 Section 5.1: From Theorem 5.1.3 to Example 7 (including) 20 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional) 22	g Example 3.	Section 4.5:-Dimension – up to and including Example 3	10	
III Matrix Transformations 12 12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators – Rotation in R ³ 13 Section 4.9: - Rotation Operators – Rotation in R ³ 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 12 18 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 19 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 22 Section 5.2: - Rest of the section (Geometric and algebraic multiplicity are optional) 22	ple 3 (proofs of all the	Section 4.5: - Rest of the section from Example 3 (proof	11	
12 Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection operators, Projection operators 13 Section 4.9: - Rotation Operators – Rotation in R ³ 14 Section 4.9: - Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 18 Section 5.1: - Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Rest of the section (Geometric and algebraic multiplicity are optional)				
operators, Projection operators 13 Section 4.9:- Rotation Operators – Rotation in R ³ 14 Section 4.9:- Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10: - rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 18 Section 5.1:- Eigen Values and Diagonalization 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2: - Rest of the section (Geometric and algebraic multiplicity are optional)				III
13 Section 4.9:- Rotation Operators – Rotation in R ³ 14 Section 4.9:- Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 18 Section 5.1:- Eigen Values and Diagonalization 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)	n \mathbb{R}^2 and \mathbb{R}^{3-} Reflection		12	
14 Section 4.9:- Rest of the section. 15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) 1V Eigen Values and Diagonalization 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)				
15 Section 4.10: - Properties of Matrix Transformations – up to and including Example 4. 16 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) IV Eigen Values and Diagonalization 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)	in R ³		13	
including Example 4. 16 Section 4.10:- rest of the section (proofs of theorems are optional) 17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) IV Eigen Values and Diagonalization 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)			14	
17 Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional) IV Eigen Values and Diagonalization 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)	-	including Example 4.	15	
Theorem 4.11.2 is optional) IV Eigen Values and Diagonalization 12 18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 19 Section 5.1: - From Theorem 5.1.3 to Example 7 (including) 20 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)			16	
18 Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3 19 Section 5.1; -From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)	-	Theorem 4.11.2 is optional)	17	
19 Section 5.1; -From Theorem 5.1.3 to Example 7 (including) 20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)				IV
20 Section 5.1: - Rest of the section (Eigen values of general linear transformation is optional) 21 Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)				
transformation is optional)21Section 5.2: - Diagonalization – up to and including Example 4 (proofs of theorems are optional)22Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)				
(proofs of theorems are optional) 22 Section 5.2; - Rest of the section (Geometric and algebraic multiplicity are optional)		transformation is optional)		
multiplicity are optional)		(proofs of theorems are optional)		
V ODEN ENDED 10		multiplicity are optional)	22	
V OPEN ENDED 12 Rank space, Null space and Rank- Nullity theorem, General Linear 12	12	OPEN ENDED		V

References:

1 Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.

- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	1	1	2	0	0
CO 3	2	1	3	1	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	✓	~	~	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	√	√	~	\checkmark

Programme	B. Sc. Mathema	B. Sc. Mathematics Honours								
Course Code	MAT3MN205									
Course Title	OPTIMIZATI	OPTIMIZATION TECHNIQUES								
Type of Course	Minor									
Semester	III	III								
Academic Level	200 - 299									
Course Details	Credit	Total Hours								
		per week	per week							
	4	4	-	60						
Pre-requisites	Basic understar	iding of linear algebra and in	ntroductory opt	imization						
	concepts.									
Course Summary	and optimization method, and so Students will g	This course provides a comprehensive exploration of linear programming and optimization techniques, focusing on graphical methods, the simplex method, and specialized problems like transportation and assignment. Students will gain practical skills in formulating, solving, and analyzing linear programming models, with applications in various optimization								

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Describe the fundamental properties and types	U	С	Internal
	of linear programming models, distinguishing			Exam/
	between maximization and minimization			Assignment/
	models, and explain various methods used for			Seminar/
	solving linear programming problems			Viva/ End
	including graphical methods.			Sem Exam
CO2	Apply the simplex method to solve both	Ap	Р	Internal
	maximization and minimization linear			Exam/
	programming problems, compare the			Assignment/
	graphical method with the simplex method in terms of efficiency and applicability, and			Seminar/
	demonstrate problem-solving skills through			Viva/ End
	worked-out examples.			Sem Exam
CO3	Evaluate and solve transportation and	An	С	Internal
	assignment problems using specific techniques			Exam/
	such as the North-West corner method, Least			Assignment/
	Cost cell method, Vogel's approximation			Seminar/
	method, and the Hungarian method, while also			Viva/ End
	comparing the transportation model with			Sem Exam
	general linear programming models.			

	ext ok	Operations Research (2/e), P Rama Murthy ,New Age Internation	al Pub	1
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		Linear Programming Models: (Graphical Method)	10	Min 15
	1	Section 2.1- Introduction, 2.2- Properties of Linear Programming Model		
	2	Section 2.3-Maximization Models		
	3	Section 2.4- Minimization Models		
	4	Section 2.5- Methods for the Solution of a Linear Programming Problem		
	5	(up to Problem 2.9) Section 2.5- Methods for the Solution of a Linear Programming Problem (From Problem 2.9)		
II		Linear Programming Models: (Simplex Method)	13	Min 15
	6	Section 3.1- Introduction, 3.2- Comparison Between Graphical and Simplex Methods	10	
	7	Section 3.3- Maximisation Case		
	8	Section 3.4- Minimisation Case		
	9	Section 3.5- Worked Out Problems- Maximization		
	10	Section 3.7- Minimisation Problems		
ш		Linear Programming Models: (Two Phase Simplex Method and Transportation Problem)	11	Min 15
	11	Section 3.8- Mixed Problems		
	12	Section 3.10- Artificial Variable Method or Two Phase Method		
	13	Section 3.11- Degeneracy in Linear Programming Problems		
	14	Section 4.1, 4.2 Transportation model		
	15	Section 4.3 – Comparison between Transportation model and		
		general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm.		
IV	Li	near Programming Models: (Transportation Problem and Assignment Problem)	14	
	16	Section 4.4.3- Basic feasible solution by North -West corner method		Min 15
	18	Section 4.4.4- Solution by Least Cost cell method		
	19	Section 4.4.5- Solution by Vogel's approximation method		
	20	Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module)		
	21	Section 5.1, 5.2 – Assignment model,		
	22	Section 5.4- Approach to solution-Hungarian method(Other methods of solution are optional)		
V		Open Ended Module	12	
	with Trai	plex method special Cases- Alternate solution. Unbound Solutions, Pro Unrestricted Variables Isportation model- Modified distribution method ne theory	blem	

References :

1. KV Mittal and C Mohan, Optimization methods in Operations research and system analysis(3/e)

2. Kanti Swarup, PK Gupta and Manmohan, Operations Research(20/e)

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	✓	\checkmark	\checkmark
CO 2	~	√	~	~	\checkmark
CO 3	~	\checkmark	~	~	\checkmark

Programme	B. Sc. Mathemat	ics Honours									
Course Code	MAT1MN106	MAT1MN106									
Course Title	PRINCIPLES C	PRINCIPLES OF MICRO ECONOMICS									
Type of Course	Minor										
Semester	Ι										
Academic Level	100 - 199										
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours							
	4	4	-	60							
Pre-requisites	Higher Seconda	ry Mathematics	I	1							
Course Summary	the law of dema Functions to und demand elasticity utility maximiza optimization tech	Explore market behaviour in Demand and Supply Analysis, focusing on utility, the law of demand, supply, and elasticity, and delve into Cost and Revenue Functions to understand cost structures, revenue functions, and their relation to demand elasticity. Explore the Theory of Consumer Behaviour to comprehend utility maximization and rational consumer choices, then apply economic optimization techniques using derivatives in Economic Applications to optimize functions and solve constrained optimization problems efficiently.									

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used						
CO1	Analyse the factors affecting demand and supply and determine market equilibrium.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam						
CO2	Apply the concepts of cost and revenue functions to analyze short-run and long- run production decisions.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam						
CO3	Evaluate economic functions and optimize using derivatives and Lagrange multipliers.	E	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam						
# - Factual	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

Text Book		 Principles of Micro Economics, H.L.Ahuja, 15th revised editi Introduction to Mathematical Economics, Edward.T.Dowlin Schaum's Outline series, TMH 					
Module							
Ι		Demand and Supply Analysis Text(1) (Relevant sections of chapter 5 and 7)	13	(70)			
	1	Utility and demand, the meaning of demand and quantity demanded					
	2	The law of demand- demand curve- market demand curve					
	3	Reasons for the law of demand- slope of a demand curve	-				
	4	Shift in demand- demand function and demand curve		Min			
	5	The meaning of supply- supply function- law of supply		15			
	6	6 Slope of a supply curve- shift in supply- market equilibrium					
	7	Price elasticity of demand- measurement of price elasticity- arc elasticity of demand- cross elasticity of demand					
II		12					
	8	(Relevant sections of chapter 19 and 21) Cost function- Average Cost (AC) and Marginal Cost (MC)					
	9	Short run costs: Total Fixed and Variable Cost - Short Run average cost curve- Average Variable Cost (AVC)- Relationship between AVC and Average product- Average Total Cost- Marginal Cost		Min			
	10	Long run costs: Long Run Average Cost Curve- relationship of Long run Average Cost Curve (LAC) and Long run Marginal Cost Curve (LMC) with SAC and SMC		15			
	11	Revenue function, Marginal Revenue (MR) and Average Revenue (AR)					
	12	Relation between MR, AR and elasticity of demand	1				
III		Theory Of Consumer Behaviour Text (1) (Relevant sections of chapter 9 and 11)	10				
	13	Cardinal utility analysis- the law of diminishing marginal utility- illustration of law of diminishing marginal utility					
	14	The law of equi-marginal utility]	Min 15			
	15	Indifference curves- ordinal utility	1				
	16	Marginal rate of substitution- properties of indifference curves					
IV		Economic Applications of Derivatives Text (2) (Chap-4: sec 4.7&4.8, Chap 5: sec 5.1 to 5.7)	13				
	17	Economic application of derivatives- marginal, average, total concepts					

	18											
	19	Functions of several variables and partial derivatives	-									
	20	Second order partial derivatives, optimization of multivariable function		Min 15								
	21	Constrained optimization with Lagrange multipliers										
	22	Significance of Lagrange multipliers, differentials										
V		Open Ended	12									
	Derivative of a function, first order derivative, second order derivative, local maxima, local minima, optimization											
Reference 1. N		natical analysis for economists, RGD Allen, Macmillan.										

2. Maths for Economics(3/e), Geoff Renshaw, Oxford University Press, N.Y. (2012)

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	1	3	2	3	2	3	1	2
CO 3	3	2	3	1	3	2	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	\checkmark	\checkmark	✓	\checkmark	\checkmark
CO 2	\checkmark	\checkmark	~	~	\checkmark
CO 3	\checkmark	\checkmark	\checkmark	~	\checkmark

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Programme	B. Sc. Mathemat	B. Sc. Mathematics Honours					
Course Code	MAT2MN106	MAT2MN106					
Course Title	OPTIMIZATIO	ON TECHNIQUES IN EC	ONOMICS				
Type of Course	Minor						
Semester	II						
Academic Level	100 - 199						
Course Details	e Details Credit Lecture/Tutorial Practi- per week per we						
	4	4	-	60			
Pre-requisites	Higher Secondar	y Mathematics					
Course Summary	inequality, inclu and Gini ratio. directional deriv constrained and such as profit ma course covers inj	This course examines the causes, effects, and measures of income inequality, including its measurement using tools like the Lorenz curve and Gini ratio. It explores calculus of several variables, focusing on directional derivatives, gradients, and optimization techniques, both constrained and unconstrained, with applications in economic contexts such as profit maximization and monopolistic practices. Additionally, the course covers input-output analysis, introducing technological coefficient matrices and models to analyse economic equilibrium and production					

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Analyse the causes and effects of income inequality and evaluate the measures used to reduce it.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO2	Apply the principles of calculus to optimize economic functions without constraints.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO3	Evaluate constrained optimization problems using appropriate mathematical techniques.	Е	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)							
	Knowledge(F) Conceptual Know	ledge (C) Proced	ural Knowledge (P)) Metacognitive				
Knowledge	e (M)							

Text bo	Text book:1Micro Economic Theory(6/e), M.L.Jhingan, Vrinda publications.					
		2. Mathematics for Economists, Carl.P.Simon, Lawrence Blume, W.W Company, Inc(1994) ISBN 0-393-95733-0.	'. Norta	n&		
		3. Mathematics for Economics(Revised Edn), Mehta- Madnani, S. Ch	and.			
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)		
Ι		Inequalities in Income -Text (1) (Chapter 47)	10			
	1	Inequalities in Income- Causes of inequality				
	2	Effects of inequality – measures to reduce inequality		Min 15		
	3	Measurement of inequality of income- Lorenz curve Gini ratio				
II		Calculus of Several Variables and Unconstrained Optimization Text(2)(Chap 14: 14.6,14.7,14.8, Chap 17: sec.17.1 to 17.5)	14			
	4	Directional derivatives and gradients, the gradient vector				
	5	Approximation by differential Jacobian derivative				
	6	The chain rule, higher order derivative				
	7	Second order derivatives and Hessians				
	8	Young's theorem, economical applications				
	9	Unconstrained optimization: definitions, first order conditions, second order conditions		Min 15		
	10	Global maxima and minima, global maxima of concave functions				
	11	Economic applications- profit maximising firm- discriminating Monopolist				
	12	Least square analysis				
III		Constrained Optimization - Text (2) (Chap 18: sec.18.1 to 18.7)	12			
	13	First order conditions: objective function, constraint functions, examples				
	14	Equality constraints, two variables and one equality constraints, several equality constraints	-	Min		
	15	Inequality constraints, one inequality constraint, several inequality constraints		15		

	16	Mixed constraints, constrained minimization problems		
	17	Kuhn-Tucker formulation, examples and applications		
IV		Input output analysis - Text (3) (Chap 19 :sec.19.1 to19.7,19.9,19.11,19.13)	12	
	18	Introduction- assumption- technological coefficient matrix		
	19	Closed and open input output model- coefficient matrix and open model		Min
	20	The Hawkins- Simon conditions- solution for two industries		15
	21	Determination of equilibrium of prices- coefficient matrix and closed model		
	22	The Leontief production function-limitation of input output analysis		
V		Open Ended Module	12	
		total derivative, The chain rule, Level curves and their tangents, Concave vex Functions	and	
2. Fu 3. M	athemat Indamer athemat	tical Analysis for Economists, R G D Allen, Macmillan. ntals of Mathematical Economics(4/e), A C Chiang& K Wainwright, McGraw H ical Optimization and Economic Theory (Classics in Applied Mathematics), Mi M(2002)		1

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping	of COs	with	PSOs	and POs	:
---------	--------	------	-------------	---------	---

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2	2	1	3	2	1
CO 2	3	2	3	1	2	1	3	1	1
CO 3	2	2	3	1	2	1	3	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	✓	~	~	\checkmark
CO 3	~	\checkmark	\checkmark	~	\checkmark

Programme	B. Sc. Mathemat	ics Honours				
Course Code	MAT3MN206	MAT3MN206				
Course Title	APPLIED MAT	THEMATICS FOR ECONC	MIC ANALYS	SIS		
Type of Course	Minor					
Semester	III					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	4	4	-	60		
Pre-requisites	Higher Secondar	y Mathematics				
Course Summary	applications. It proportions, isoc Additionally, it	This course covers differential and difference equations and their economic applications. It explores production functions, including the law of variable proportions, isoquants, and optimization of Cobb-Douglas and CES functions. Additionally, it introduces econometrics, focusing on regression analysis and econometric methodology.				

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used				
CO1	Apply differential and difference equations to model and solve economic problems.	Ар	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO2	Analyse production functions to understand the relationship between inputs and outputs, including optimization techniques.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam				
CO3	CO3 Evaluate econometric models to interpret statistical relationships and economic variables. E C Internal Exam/ Assignment/ Sem Viva/ End Sem E							
# - Factual	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 							

Text Books	 Introduction to Mathematical Economics, Edward.T.Dowling, Schaum's Outline series, 3rd edition, TMH. Econometrics and Mathematical Economics, SP singh, AP Parashar, HP singh, S.Chand Basic Economics(4/e), Damodar N Gujarati and Sangeeta, TMH Indian Reprint, 2008. 						
Module	Unit Content			Ext. Marks (70)			
Ι	1 2 3	Differential and Difference Equations - Text (1) (Chapter 16, 17) Differential Equation: definition and concepts First order linear differential equation, exact differential equations, integrating factors Separation of variables, Economic applications	12 Min 15				
	4 5 6	Difference equations: definitions and concepts First order linear difference equations, Economic applications The Cobweb Model, the Harrod model					
Π	7 8 9	10	Min 15				
	10	The elasticity of substitution, ridge lines and Economic region of production	14				
III	The Production Function(contd.) and Euler's theorem Text (1&2)(Chapter 14: sec 14.10 to 14.13 of text 2, Chap 6: sec 6.9 &6.10 of Text 1)11Euler's theorem (Statement only), Euler's theorem and homogenous production function12Cobb Douglas production function, properties, limitations13CES production function, properties, advantages, limitations14Returns to scale, Cobb Web theorem15Optimization of Cobb Douglas, Optimization of CES production Function			Min 15			
	16 17 18 19 20 21 22	12	Min 15				
V		Sample regression function (SRF)	12				

Open Ended Module

Matrix solution of Simultaneous Differential and Difference equations, Differentiation of Exponential and Logarithmic functions

References:

1 Mathematical Analysis for Economists, RGD Allen, MacMillan.

2 Fundamentals of Mathematical Economics, A C Chiang & K Wainwright (4/e,) McGraw Hill 3 Introductory Econometrics: A Modern Approach (6/e), Jeffrey M. Wooldridge, Cengage learning

2016

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs :

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	~	~	~	~	\checkmark
CO 2	~	√	✓	~	✓
CO 3	~	√	~	~	\checkmark

ONLINE COURSES

(These courses are currently available on the government portal SWAYAM. If they are removed in the future, the board will update the course listings accordingly)

I. <u>The course in brackets, including its course code, is equivalent to the online</u> <u>course specified against it.</u>

1. (MAT1CJ101 Differential Calculus + MAT2CJ101 Integral Calculus)

https://onlinecourses.nptel.ac.in/noc24_ma47/preview

Calculus of One Real Variable By Prof. Joydeep Dutta | IIT Kanpur

2. (MAT3CJ201 MULTIVARIABLE CALCULUS)

https://onlinecourses.nptel.ac.in/noc24_ma52/preview

Calculus of Several Real Variables By Prof. Joydeep Dutta | IIT Kanpur

3. (MAT4CJ203 REAL ANALYSIS I) https://onlinecourses.swayam2.ac.in/cec24_ma01/preview

Real Analysis By Prof. Surajit Borkotokey | Dibrugarh University

4. (MAT5CJ302 ABSTRACT ALGEBRA I)

https://onlinecourses.nptel.ac.in/noc24_ma50/preview

Introduction to Abstract Group Theory By Prof. Krishna Hanumanthu | Chennai Mathematical Institute

5. (MAT5CJ303 COMPLEX ANALYSIS I + MAT6CJ304 COMPLEX ANALYSIS II)

https://onlinecourses.nptel.ac.in/noc24 ma60/preview

Complex Analysis

By Prof. Pranav Haridas | Kerala School of Mathematics

6. (MAT8EJ401 Advanced Topology)

https://onlinecourses.nptel.ac.in/noc24_ma74/preview

An Introduction to Point-Set-Topology Part-II By Prof. Anant R. Shastri | IIT Bombay 7. (MAT8EJ402 PARTIAL DIFFERENTIAL EQUATIONS)

https://onlinecourses.nptel.ac.in/noc24 ma73/preview

Partial Differential Equations By Prof. Sivaji Ganesh | IIT Bombay

8. (MAT8EJ406 OPERATIONS RESEARCH)

https://onlinecourses.swayam2.ac.in/cec24_ma05/preview

Operations Research By Professor Bibhas C. Giri | Jadavpur University

II. <u>The following courses are intended to offer students additional credits beyond</u> <u>their regular credits.</u>

- 1. <u>https://onlinecourses.nptel.ac.in/noc24_ma42/preview</u> Set Theory and Mathematical Logic By Prof. Amit Kuber | IIT Kanpur (For first year students)
 - <u>https://onlinecourses.swayam2.ac.in/cec24_ma17/preview</u> Logic and Sets
 By Mr. Mohamed Nishad Maniparambath | Farook College, Kozhikode
 - 3. <u>https://onlinecourses.nptel.ac.in/noc24_ma89/preview</u>

A Basic Course in Number Theory By Prof. Shripad Garge | IIT Bombay

Model Question Papers

First Semester

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1CJ101 / MAT1MN100: DIFFERENTIAL CALCULUS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Determine the domain of the composite function $f \circ g$ of the functions $f(x) = \sqrt{x}$ and g(x) = x + 1. Evaluate f at the points g(3) and f(9).
- 2. Evaluate $\lim_{x \to 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$.
- 3. Does the curve $y = x^4 2x^2 + 2$ have any horizontal tangents? If so, where?
- 4. The curve $y = ax^2 + bx + c$ passes through the point (1,2) and is tangent to the line y = x at the origin. Find a, b and c.
- 5. Find $\frac{dy}{dx}$ if $2y = x^2 + siny$.
- 6. Find the normal to the curve $x^2 xy + y^2 = 7$ at the point (-1, 2).
- 7. Find the absolute extrema of $f(x) = x^{\frac{2}{3}}$ on [-2,3).
- 8. If f'(x) = 0 at each point of an interval *I*, then show that f(x) = C for all *x* in *I*, where *C* is a constant.
- 9. Give an example of a function defined on [0, 1] that has neither a local maximum nor a local minimum value at 0.
- 10. Show that $\lim_{x \to \infty} \frac{1}{x} = 0$.

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

- 11. Give an equation for the shifted graph of $x = 3y^2$ up 2 and right 3 units. Then sketch the original and shifted graphs together.
- 12. Is any real number exactly 1 less than its cube? Justify your answer.
- 13. Define the left-hand limit of a function f at a point x_0 . Give one example.

- 14. Find the average rate of change of f(t) = 1/t with respect to t over the interval from t = 2 to t = 3.
- 15. What is implicit differentiation? When do you need it? Give examples.
- 16. Show that the function $f(x) = x^4 + 3x + 1$ has exactly one zero in the interval [-2, -1].
- 17. Using the Sandwich Theorem to find the asymptotes of the curve $y = 2 + \frac{sinx}{x}$.
- 18. Find a function that satisfies the following conditions and sketch its graph.

$$\lim_{x \to \pm \infty} f(x) = 1, \lim_{x \to 1^-} f(x) = \infty, \lim_{x \to 1^+} f(x) = -\infty.$$

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) Find the intervals on which $f(x) = -x^3 + 12x + 5, -3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values and what are these values?
 - (b) Show that $f(x) = \frac{x^2 + x 6}{x^2 4}$ has a continuous extension to x = 2, and find that extension.
- 20. Graph the function $y = \frac{x^3+1}{x}$.

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024 MAT1MN101: CALCULUS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Calculate the average rate of change of the function $f(x) = x^2 + 2x$ over the interval [0, 2].
- 2. What is the slope of the tangent line to the graph of $f(x) = \frac{1}{1+x^2}$ at (-1,1).
- 3. Find the points on the graph of $f(x) = x^4 2x^2 + 2$ where the tangent line is horizontal.
- 4. Find functions f and g such that $F(x) = \sin(x^2)$ can be written as F(x) = f(g(x)). Also find F'(x).
- 5. If $y = 2x^2 x + 1$, find Δy approximately using derivatives when x changes from 1 to 0.5.
- 6. Find the relative extrema of $f(x) = x^4 4x^3 + 12$.
- 7. Determine the intervals where the graph of $f(x) = x^{2/3}$ is concave upward.
- 8. Find $\int (x+1) (x^2-2) dx$.
- 9. Find $\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$.
- 10. Find the average value of the function $f(x) = 4 x^2$ over the interval [-1, 3].

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

- 11. Find an equation of the tangent line to the graph of $x^2 + y^2 = 4$ at the point $(1,\sqrt{3})$
- 12. The volume V of a cube with sides of length 'x' inches is changing with respect to time, in seconds. How fast is the volume of the cube increasing when the side of the cube is 10 in. long and increasing at the rate of 0.5in/sec?
- 13. Find the extreme values of the function

$$f(x) = 3x^4 - 4x^3 - 8$$
 on $[-1, 2]$

14. Verify the Mean Value theorem for the function

$$f(x) = x^3$$
 on $[-1, 1]$

- 15. Evaluate $\lim_{n\to\infty}\sum_{1}^{n}\left[\left(\frac{k}{n}\right)^{2}+2\right]\left(\frac{4}{n}\right)$.
- 16. The velocity function of a car moving along a straight road is given by v(t) = t 20 for $0 \le t \le 40$. Show that at t = 40, the car will be in the same position as it was initially.
- 17. Find the area of the regions between the graphs of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -1&x = 2.
- 18. Find the volume of the solid obtained by revolving the region under the graph of $y = \sqrt{x}$ on [0, 2] about the X-axis.

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) Find the points of inflection of $f(x) = (x-1)^{1/3}$.
 - (b) Find the relative extrema of $f(x) = x^3 3x^2 24x + 32$ using the second derivative test.
- 20. Sketch the graph of the function

$$f(x) = \frac{x^2}{x^2 - 1}.$$

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1MN102: CALCULUS OF SINGLE VARIABLE

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Explain why $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.
- 2. Find $\lim_{x \to 5} (x^2 4x + 3)$.
- 3. Compute $\lim_{x \to -4} \frac{2x+8}{x^2+x-12}$
- 4. Evaluate the slope of the tangent line to $y = \sqrt{x}$ at x = 9.
- 5. Compute $\frac{dy}{dx}$ if $y = 3x^8 2x^5 + 6x + 1$.
- 6. Find $\frac{dy}{dx}$ if $y = \cos(x^3)$.
- 7. Use implicit differentiation to find dy/dx if $5y^2 + \sin y = x^2$.
- 8. Using L'Hopital's Rule Evaluate $\lim_{x\to 2} \frac{x^2-4}{x-2}$
- 9. Find the interval on which $f(x) = x^3$ is increasing.
- 10. Find all critical points of $f(x) = x^3 3x + 1$.

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

- 11. Find $\lim_{x \to +\infty} \frac{3x+5}{6x-8}$
- 12. Discuss the continuity of the function $f(x) = \sqrt{9 x^2}$
- 13. Find an equation for the tangent line to the curve y = 2/x at the point (2,1) on this curve.

14. Show that |x| is continuous everywhere.

15. Find
$$y'(x)$$
 for $y = \frac{x^3 + 2x^2 - 1}{x + 5}$.
16. Find $\frac{dy}{dx}$ if $y = \sin^{-1}(x^3)$ and $y = \sec^{-1}(e^x)$
17. Compute $\frac{d}{dx} \left[\ln \left(\frac{x^2 \sin x}{\sqrt{1 + x}} \right) \right]$

18. Use logarithmic differentiation to find $\frac{d}{dx} \left[(x^2 + 1)^{\sin x} \right]$

Section C

Answer any **one** of question The question carries **10** marks Maximum **10** marks

19. (a) Find
$$dy/dx$$
 if $y = \frac{\sin x}{1 + \cos x}$
(b) Evaluate $\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$

20. Sketch the graph of the equation $y = x^3 - 3x + 2$ and identify the locations of the intercepts, relative extrema, and inflection points.

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024 MAT1MN103: BASIC CALCULUS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Find the domain of the function $f(x) = \sqrt{x-1}$
- 2. Solve: $\ln(2x 3) = 5$
- 3. Show that the function $f(x) = x^3 + 2x 1$ has a zero in the interval [0, 1].
- 4. Use the quotient rule to differentiate $f(x) = \frac{\sqrt{x}}{x^3+1}$
- 5. Find $\frac{dy}{dx}$ given that $y^3 + y^2 5y x^2 = -4$
- 6. Solve $\arctan(2x-1) = \frac{\pi}{4}$ for x.
- 7. Define increasing function on a interval. Give one example.
- 8. Find the points of inflection of $f(x) = x^3 6x^2 + 12x$.

9. Find the general solution of the differential equation $\frac{dy}{dt} = 9t^2$

10. Evaluate the integral $\int_{-1}^{2} (x^2 - 3x + 2) dx$.

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

- 11. Show that the functions f and g are inverses of each other, where $f(x) = 2x^3 1$ and $g(x) = \sqrt[3]{\frac{x+1}{2}}$.
- 12. Show that the limit $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.
- 13. Evaluate: $\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x}$
- 14. Using formal definition of derivatives, evaluate f'(x) for the function $f(x) = \sqrt{x}$

- 15. Find an equation of the tangent line to the graph of $f(x) = \frac{3-\frac{1}{x}}{x+5}$ at (-1,1).
- 16. Find the extrema of $f(x) = 2x 3x^{2/3}$ on the interval [-1, 3].
- 17. Find the two x-intercepts of the function $f(x) = x^2 x 2$ and show that f'(x) = 0 at some point between the two x-intercepts.
- 18. Evaluate $\int_0^2 |2x 1| dx$.

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. Analyze and Sketch the graph of the function $f(x) = \frac{x^2 2x + 4}{x 2}$.
- 20. (a). Find the average value of $f(x) = 3x^2 2x$ on the interval [1,4].
 - (b). Find the derivative of $F(t) = \int_{\pi/2}^{x^2} \cos t \, dt$.

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024 MATIMN104: MATHEMATICAL LOCIC SET THEORY AND

MAT1MN104: MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Give truth tables for conjuction and disjunction of two propositions.
- 2. Rewrite the proposition "for each integer x, there exists an integer y such that x + y = 0" symbolically.
- 3. Define contradiction. Give example.
- 4. Let $A = \{a, b, x, y, z\}, B = \{c, d, e, x, y, z\}$, and $U = \{a, b, c, d, e, w, x, y, z\}$. Find $(A \cup B)'$ and $A' \cap B'$.
- 5. Let |A| = 3, |B| = 5 and $|A \cap B| = 2$. Find $|A \cup B|$.
- 6. List the elements of the Cartesian product $A \times B$, where $A = \{1, 2\}$ and $B = \{a, b, c\}$.
- 7. Let $A = \begin{bmatrix} 2 & -3 & 7 \\ 0 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 0 & -1 \end{bmatrix}$. Find A + B
- 8. Find the number of ways of drawing a red queen or a black king from a standard deck of playing cards.
- 9. Find the number of words that can be formed by scrambling the letters of the word SCRAM-BLE.
- 10. Suppose a card is drawn at random from a standard deck of playing cards. Find the probability that it will be a spade.

Section B

- 11. Show that $p \to q \equiv \sim q \to \sim p$
- 12. Simplify the set expression $(A \cap B') \cup (A' \cap B) \cup (A' \cap B')$.

- 13. Using the principle of inclusion-exclusion, find the number of elements in the union of three sets A, B, and C where |A| = 10, |B| = 15, |C| = 20, $|A \cap B| = 5$, $|A \cap C| = 4$, $|B \cap C| = 3$, and $|A \cap B \cap C| = 2$
- 14. Define absolute value function and draw its graph.
- 15. Find the number of positive integers \leq 3000 and not divisible by 7 or 8.

16. Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -2 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$. Find AB and BA , if defined.

- 17. Find the number of groups that can be formed from a group of seven marbles if each group must contain at least three marbles.
- 18. Find the probability of obtaining at least one head when three coins are tossed.

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

19. Let
$$A = \begin{bmatrix} 2 & -3 \\ 5 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -3 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & -2 & 1 \\ -3 & 0 & 4 \end{bmatrix}$.

- (a). Show that A + (-A) = O
- (b). Show that A(B+C) = AB + AC.
- 20. (a). Explain converse, inverse, and contrapositive of a proposition with examples.
 - (b). Verify that $\sim (p \lor q) \equiv \sim p \land \sim q$ and $\sim (p \land q) \equiv \sim p \lor \sim q$

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024 MAT1MN105: MATRIX THEORY

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

1. Use parametric equations to describe the solution set of the linear equation 7x - 5y = 3

2. If $A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$, find $2A^T + B$

- 3. Give an example to show that matrix multiplication is not commutative
- 4. What conditions must b_1, b_2 and b_3 satisfy in order for the system of equations $x_1 + x_2 + 2x_3 = b_1$ $x_1 + x_3 = b_2$ $2x_1 + x_2 + 3x_3 = b_3$ to be consistent

5. If $A = \begin{bmatrix} 3 & 2 & 6 \\ 0 & 1 & -2 \\ 0 & 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 7 \\ 0 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix}$, find the diagonal entries of AB by inspection. 6. If $A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$, find det(A)

- 7. Find adjoint of the matrix $A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$
- 8. If A, B are square matrices of same order, check whether det(A + B) = det(A) + det(B)
- 9. If $\mathbf{u} = (1, 3, -2, 7)$ and $\mathbf{v} = (0, 7, 2, 2)$, find the dot product of the vectors \mathbf{u} and \mathbf{v} . Also find the distance between \mathbf{u} and \mathbf{v}
- 10. Find the initial point of the vector that is equivalent to $\mathbf{u} = (1, 2)$ and whose terminal point is B(2, 0)

Section B

- 11. Solve the linear system 4x - 2y = 116x - 8y = 4
- 12. Solve by Gauss-Jordan elimination. $x_1 + 3x_2 - 2x_3 + 2x_5 = 0$ $2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1$ $5x_3 + 10x_4 + 15x_6 = 5$ $2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6$

13. Using the row operations find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$

14. If
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, show that $(A^{-1})^3 = (A^3)^{-1}$

15. Use row reduction to show that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$$

- 16. Use Cramer's rule to solve $x_1 + +2x_3 = 6$ $-3x_1 + 4x_2 + 6x_3 = 30$ $-2x_1 - 2x_2 + 3x_3 = 8$
- 17. Find vector and parametric equations for the line in \mathbb{R}^2 that passes through the points P(0,7) and Q(5,0)
- 18. Find vector and parametric equations for the line in \mathbb{R}^2 that passes through the points P(0,7) and Q(5,0)

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

19. (a) Solve the linear system by Gaussian elimination $2x_1 + 2x_2 + 2x_3 = 0$ $-2x_1 + 5x_2 + 2x_3 = 1$ $8x_1 + x_2 + 4x_3 = -1$ (b) If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, show that $(A^{-1})^T = (A^T)^{-1}$

20. Let $\mathbf{u} = (3, 2, -1), \mathbf{v} = (0, 2, -3), \mathbf{w} = (2, 6, 7)$. Compute $\mathbf{u}.(\mathbf{v} \times \mathbf{w}), \mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ and $(\mathbf{u} + \mathbf{v}) \times \mathbf{w}$

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1MN106 - PRINCIPLES OF MICRO ECONOMICS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Define Law of Demand.
- 2. Define market demand curve.
- 3. What is meant by Cross elasticity of demand.
- 4. Define average and marginal revenue.
- 5. What is meant by a point of inflexion?
- 6. Define an indifference map.
- 7. Explain the term 'shift' in demand curve.
- 8. Explain the meaning of Budget line.
- 9. If $TC = 5Q^2 + 12Q + 14$, find MC.
- 10. Given price equation p = 100 2q find the point elasticity of demand when q = 10.

Section B

- 11. Derive the relation between MR, AR and elasticity of demand.
- 12. What are the determinants of demand?
- 13. Explain the various assumptions on the problem of cost production.
- 14. Explain the properties of indifference curves.
- 15. Assume a four sector economy, where Y = C + I + G + (X M), $C = C_0 + bY$, $I = I_0 + aY$, $G = G_0, Z = Z_0$. Find the equilibrium level of income in terms of general parameters.
- 16. What are the criticism against utility approach?

- 17. Find the slope of the average cost curve in terms of average cost and marginal cost.
- 18. Suppose the price ' p ' and quantity ' q ' of a commodity are related by the equation $q = 30 4p p^2$. Find elasticity of demand at p = 2.

Section C

Answer any **one** of question The question carries **10** marks Maximum **10** marks

- 19. (a) The average cost function is given by $AC = \frac{1500}{q} + 15 6q + q^2$. Find MC & TC at 50 units of output.
 - (b) Find the maximum profit: Given $TR = 1400q 6q^2$ and TC = 1500 + 80q
- 20. Use Lagrange multiplier method to optimize $z = 4x^2 2xy + 6y^2$ subject to the constraint x+y = 72. Also estimate the effect on the value of the objective function from 1-unit change in the constant of the constraint.

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024 MAT1VN101: PYTHON PROGRAMMING

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Discuss the advantages of using Python for programming
- 2. Describe the different data types available in Python
- 3. Discuss the significance of polymorphism in object-oriented programming
- 4. Explain the process of reading from and writing to files in Python
- 5. Explain the purpose of the NumPy library in Python. Provide an example of creating a NumPy array.
- 6. Define descriptive statistics and explain their importance in data analysis
- 7. Explain the concept of ANOVA (Analysis of Variance) and its application in data analysis.
- 8. Describe the main features and functionalities of the Matplotlib library.
- 9. Discuss the use of the 'csv' module in Python with an example program
- 10. Describe the concept of formal arguments with an example

Section B

- 11. Write a Python program to create a list of numbers and print the list
- 12. Write a Python program to print the first 10 natural numbers using a while loop
- 13. List and describe any four methods of file objects in Python
- 14. Explain the concept of exception handling in Python with an example
- 15. Define outliers and explain their potential impact on data analysis
- 16. Compare and contrast the use of NumPy arrays and Pandas DataFrames

- 17. Write a Python program to create a line plot using Matplotlib. Customize the plot by adding titles, labels, and a legend.
- 18. Explain the advantages of using Seaborn over Matplotlib for statistical visualizations. Provide an example of a basic plot using Seaborn

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. Define data visualization and explain its importance in data analysis. Provide examples of common types of data visualizations and their use cases.
- 20. List and explain any four built-in functions that can be used with classes and instances in Python.

I Semester B.Sc. (CUFYUGP) Degree Examinations October 2024 MAT1VN 102 :Statistics for Data science

(Credits: 4)

Maximum Time : 2 Hours

Maximum Marks : 70

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Calculate the mean of the following data set: 4, 8, 6, 5, 3, 7, 9.
- 2. Define skewness and explain its significance in descriptive statistics
- 3. Explain the concept of range with an example.
- 4. Describe the sample space and events in probability theory.
- 5. If the probability of drawing an ace from a deck of cards is $\frac{1}{13}$, what is the probability of not drawing an ace?
- 6. Given events A and B where P(A) = 0.4 and P(B) = 0.5, and they are independent, find $P(A \cap B)$.
- 7. Define a discrete random variable and give an example.
- 8. For a continuous random variable with the probability density function $f(x) = \frac{1}{10}$ for $0 \le x \le 10$ and 0 otherwise, find the probability that X is between 4 and 6.
- 9. Differentiate between a sample and a population with examples.
- 10. Explain what is meant by the level of significance in hypothesis testing

Section B [Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

- 11. Calculate the standard deviation for the data set: 4, 8, 6, 5, 3, 7, 9.
- 12. Explain Karl Pearson's coefficient of correlation and how it is computed.
- 13. Calculate the quartile deviation for the data set: 10, 20, 30, 40, 50, 60, 70, 80, 90.
- 14. Discuss the multiplication theorem on probability with an example.
- 15. If the probability of event A is 0.5 and the probability of event B is 0.3, find the probability of both events occurring if they are independent.
- 16. Find the mean and variance of a binomial distribution with parameters n = 5 and p = 0.4.
- 17. Calculate the mathematical expectation of a discrete random variable with the probability distribution: P(X = 0) = 0.1, P(X = 1) = 0.2, P(X = 2) = 0.3, P(X = 3) = 0.4. (Module 3)

18. Conduct a paired t-test on the following data sets: Set 1: 85, 90, 88, 75, 78
Set 2: 80, 85, 86, 70, 74

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

- 19. Given the data set:
 X: 10, 20, 30, 40, 50
 Y: 15, 25, 35, 45, 55
 Perform a simple linear regression analysis and find the regression equation.
- 20. Given the following sample data, conduct an F-test to determine if there is a significant difference between the variances of two populations:
 Sample 1: 10, 15, 10, 14, 13
 Sample 2: 8, 10, 12, 14, 11

First Semester B.Sc. (CUFYUGP) Degree Examinations October 2024 MAT1FM105(1):MATRICES AND BASICS OF PROBABILITY THEORY (Credits: 3)

Maximum Time : 1.5 Hours

Maximum Marks : 50

Section A

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. If $A = \begin{pmatrix} 2 & -3 \\ 1 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 7 \\ -3 & 4 \end{pmatrix}$. Find $A \times B$
- 2. Determine the value of $\begin{vmatrix} 3 & 2 \\ 7 & 4 \end{vmatrix}$
- 3. Define row matrix and column matrix.
- 4. Write the matrix equation corresponding to

$$2x - 5y = 8$$
$$3x + 9y = -12$$

- 5. Define population and sample
- 6. Define mid-point and relative frequency of a class and give examples.
- 7. Find mean and median of the data 12,13,16,15,13,14 and 15.
- 8. Write the sample space of an experiment consists of tossing a coin and then rolling a six-sided die.
- 9. Write the probability of the complement of an event E in terms of probability of E
- 10. Write the additional rule of probability.

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. Find the inverse of $A = \begin{pmatrix} 3 & -2 \\ 7 & 4 \end{pmatrix}$
- 12. Find the value of $A = \begin{vmatrix} 3 & 4 & -1 \\ 2 & 0 & 7 \\ 1 & -3 & -2 \end{vmatrix}$
- 13. Use matrices to solve the simultaneous equations

$$3x + 5y = 7$$
$$4x - 3y = 19$$

14. Draw an ogive for the frequency distribution

Class	Frequency
65-104	6
105-144	9
145-184	6
185-224	4
225-264	2
265-304	1
305-344	2

15. Two cards are selected, without replacing the first card, from a standard deck of 52 playing cards. Find the probability of selecting a king and then selecting a queen.

Section C [Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

16. Solve the following simultaneous equations using Cramer's rule

$$x + y + z = 4$$
$$2x - 3y + 4z = 33$$
$$3x - 2y - 2z = 2$$

17. Find the sample variance and standard deviation of the data 4, 7, 6, 7, 9, 5, 8, 10, 9, 8, 7 and 10.

First Semester B.Sc. (CUFYUGP) Degree Examinations October 2024 MAT1FM105(2):MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART I

(Credits: 3)

Maximum Time : 1.5 Hours

Maximum Marks : 50

Section A

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. How many pairs of twin primes are there between the integers 1 to 100
- 2. What is the HCF of 24, 30 and 42
- 3. 272 x 425 \div $p^2 = 400$, find p
- 4. What will be the average of first 100 natural numbers
- 5. An article is bought for Rs. 250. What should be its selling price, so as to gain 10% as profit.
- 6. What would be the simple interest obtained on an account of Rs. 8930 at the rate of 8% per annum after 5 year.
- 7. What will be the angle between the two hands of a clock at 9:50 AM
- 8. If the speed of a boat in still water is 8km/h and the rate of stream is 4km/h, then find upstream speed of the boat.
- 9. What is the missing term in the series 4, 12, 36, --, 324, 972
- 10. What is the cube root of -5832

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. Arrange the fractions $\frac{3}{5}$, $\frac{7}{9}$, $\frac{11}{13}$ in decreasing order.
- 12. The present age of Karan is 5 times the age of Shivam. After 10 years, Karan will be 3 times as old as Shivam. What are the present ages of Karan and Shivam.
- 13. If 6 persons working 8h a day earn Rs. 8400 per week, then how much 9 persons working 6h a day will earn per week.
- 14. A car covers a distance of 200km in 2h 40min, whereas a jeep covers the same distance in 2h. What is the ratio of their speeds.
- 15. A sum of Rs. 10000 amount to Rs.11449 in two years, when the interest compounded annually. What is the rate of interest per year.

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

16. (a). If $\frac{3}{a} = \frac{18}{b} = \frac{24}{c} = \frac{9}{5}$, find the value of a + b + c.

(b) The annual increase in percentage of a population is 5% and the present number of people is 16000. What will be the population in 3 years.

17. (a) Raju purchased a chair with 3 successive discounts of 20%, 12.5% and 5%. What will be the actual deduction.

(b) A train overtakes two persons who are walking at the rate of 4km/h and 8km/h in the same direction and passes them completely in 18 an 20 seconds respectively. Find the length of the train.

FIRST SEMESTER BSc (CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1CJ102/MAT2CJ102 : ELEMENTARY NUMBER THEORY

(Credits: 4)

Time: Two hours

Maximum: 70 marks

Section A

Answer any number of questions

Each question carries 3 marks; ceiling 24 marks

- 1. If g.c.d(a,b) = d, then show that g.c.d($\frac{a}{d}, \frac{b}{d}$) = 1
- 2. State and prove Euclid's lemma
- 3. Find the g.c.d of 12378 and 3054 using Euclidean algorithm.
- 4. State the fundamental theorem of arithmetic. Find the canonical representation of 360
- 5. If g.c.d(a,b) = 1, then show that g.c.d(a+b,a-b) = 1 or 2
- 6. State the condition on which the linear Diophantine equation ax+by = c is solvable. Check whether 14x+35y=93 is solvable or not
- 7. If p is a prime and p/ab , then show that p/a or p/b
- 8. Find $\varphi(360)$, where φ is the Euler's phi function
- 9. State Euler's theorem and deduce Fermat's little theorem from Euler's theorem
- 10. If $a \equiv b \pmod{n}$ and m/n , then show that $a \equiv b \pmod{m}$ also

Section B

Answer any number of questions

Each question carries 6 marks; ceiling 36 marks

- 11. Show that the expression $\frac{a(a^2+2)}{3}$ is an integer for every integer $a \ge 1$.
- 12. Show that if a and b are integers not both of which are zero, there exist integers x and y such that g.c.d(a,b)=ax + by
- 13. Solve the linear Diophantine equation 172x+20y = 1000
- 14. Find all primes less than or equal to 50 using the sieve of Eratosthenes
- 15. Find the remainder when 1! + 2! + 3! +.....+100! Is divided by 12
- 16. Solve the system of linear congruences $x \equiv 2(mod3), x \equiv 3(mod5), x \equiv 2(mod7)$ using Chinese remainder theorem.
- 17. For each positive integer $n \ge 1$, show that $n = \sum_{d/n} \varphi(d)$, where φ is the Euler's phi function and the sum being extended over all positive divisors of n
- 18. Show that $2^{340} \equiv 1 \pmod{341}$ using Fermat's theorem

Section C

Answer any ONE question

Each question carries 10 marks

- 19. State and prove Fermat's theorem
- 20. State and prove Wilson's theorem.

Model Question Papers

Second Semester

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025 MAT2CJ102: INTEGRAL CALCULUS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

1. Evaluate $\int (2\cos 2x - 3\sin 3x) dx$.

2. Find the norm of the partition $P = \{0, 1.2, 1.5, 2.3, 2.6, 3\}$ of the interval [0, 3].

3. Show that the value of $\int_{0}^{1} \sqrt{1 + \cos x} \, dx$ cannot possibly be 2.

4. Find dy/dx if y satisfies

$$y = \int_{0}^{tanx} \frac{dt}{1+t^2}$$

5. Show that
$$\lim_{x \to \infty} \ln x = \infty$$
 and $\lim_{x \to 0^+} \ln x = -\infty$.

6. Evaluate

$$\lim_{x \to 0} \frac{1 - \cos x}{x + x^2}$$

7. Evaluate

$$\int \frac{dx}{\sqrt{e^{2x} - 6}}$$

8. Express as a sum of partial fractions

$$\frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3}$$

- 9. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- 10. Define length of a curve y = f(x) from a to b. Give an example.

Section B

11. Evaluate

$$\int \frac{18 \ tan^2 x \ sec^2 x}{(2+tan^3 x)^2} dx$$

12. Find the area of the region between the parabola $y = x^2$ and the x-axis on the interval [0, b] using a definite integral.

13. Show that if f is continuous then
$$\int_{0}^{1} f(x)dx = \int_{0}^{1} f(1-x)dx$$

14. Find

$$\lim_{x \to \infty} x^{1/x}$$

15. Find

$$\int e^x \cos x \, dx$$

- 16. A pyramid 3 m high has a square base that is 3m on a side. The cross section of the pyramid perpendicular to the altitude x m down from the vertex is a square x m on aside. Find the volume of the pyramid.
- 17. Evaluate

.

$$\int \frac{3x+2}{\sqrt{1-x^2}} \, dx$$

18. The line segment $x = 1 - y, 0 \le y \le 1$ is revolved about the y-axis to generate a cone. Find its lateral surface area.

Section C

Answer any **one** of question The question carries **10** marks Maximum **10** marks

- 19. (a) State and prove the Mean Value theorem for definite integrals.
 - (b) Solve the initial value problem

$$e^{y}\frac{dy}{dx} = 2x, \ x > \sqrt{3}; \ y(2) = 0$$

20. (a) Find the derivative of $y = sec^{-1}x$, |x| > 1. (b) Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025 MAT2MN101: DIFFERENTIAL EQUATIONS AND MATRIX THEORY

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Verify that $y = xe^x$ is a solution to the differential equation y'' 2y' + y = 0.
- 2. Solve $\frac{dy}{dx} = \frac{-x}{y}, y(4) = -3.$
- 3. Solve 4y'' + 4y' + 17y = 0, y(0) = -1, y'(0) = 2.
- 4. Evaluate $\mathcal{L}(1)$ using the definition of Laplace transform.
- 5. Evaluate the inverse transform of $\frac{-2s+6}{s^2+4}$.
- 6. Give an example of a vector space V and subspaces W_1 and W_2 such that $\{0\} \neq W_1 \subsetneq W_2 \subsetneq V$.
- 7. Check whether the system $x_1 + x_2 = 1$, $4x_1 x_2 = -6$ and $2x_1 3x_2 = 8$ is consistent or not.
- 8. Determine whether the set of vectors $u_1 = (2, 1, 1)$, $u_2 = (0, 3, 0)$ & $u_3 = (3, 1, 2)$ in \mathbb{R}^3 is linearly independent or not.
- 9. Write the conditions for convergence of a Fourier series.
- 10. Write the general form of a second order linear PDE and classify its different cases.

Section B

11. Solve
$$\frac{dy}{dx} + y = f(x), y(0) = 0$$
 and $f(x) = \begin{cases} 1, 0 \le x \le 1\\ 0, x > 0 \end{cases}$

- 12. Solve $2xydx + (x^2 1) dy = 0$.
- 13. Evaluate $\mathfrak{L}^{-1}\left[\frac{s^2+6s+9}{(s-1)(s-2)(s+4)}\right]$.
- 14. Show that vectors $u_1 = (1, 0, 0), u_2 = (1, 1, 0) + u_3 = (1, 1, 1)$ form a basis for the vector space \mathbb{R}^3 .

- 15. Find a basis of the solution space for the system of equations: $x_1 x_2 2x_3 = 0$, $2x_1 + 4x_2 + 5x_3 = 0$ and $6x_1 3x_3 = 0$.
- 16. Find the eigen values and eigenvectors of $A = \begin{bmatrix} 3 & 4 \\ -1 & 7 \end{bmatrix}$.
- 17. Expand $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \pi x, 0 \le x < \pi \text{ in a Fourier series} \end{cases}$
- 18. Solve $\frac{\partial^2 u}{\partial x^2} = 4 \frac{\partial u}{\partial y}$

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) Use Gauss-Jordan Elimination to solve $x_1 + 3x_2 2x_3 = -7$, $4x_1 + x_2 + 3x_3 = 5$, $2x_1 5x_2 + 7x_3 = 9$.
 - (b) Balance the Chemical Equation: $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$.
- 20. Expand $f(x) = x^2, 0 < x < L$
 - (a) in a cosine series
 - (b) in a sine series
 - (c) in a Fourier series.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025 MAT2MN102: CALCULUS AND MATRIX ALGEBRA

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

1. Evaluate
$$\int (3x^6 - 2x^2 + 7x + 1) dx$$

- 2. Compute $\int_{1}^{0} \sqrt{1-x^2} dx$
- 3. Suppose that a particle moves along a coordinate line so that its velocity at time t is $v(t) = 2 + \cos t$. Find the average velocity of the particle during the time interval $0 \le t \le \pi$.
- 4. Evaluate $\int_{0}^{2} x(x^{2}+1)^{3} dx$
- 5. Evaluate $\int \frac{dx}{x^2 + x 2}$

6. Let
$$f(x, y, z) = \sqrt{1 - x^2 - y^2 - z^2}$$
 Find $f\left(0, \frac{1}{2}, -\frac{1}{2}\right)$ and the natural domain of f .

- 7. Define level curve and level surface.
- 8. Evaluate $\lim_{(x,y)\to(4,-2)} x\sqrt[3]{y^3+2x}$
- 9. Find the product **AB** for the following matrix

$$\mathbf{A} = \left(\begin{array}{cc} 4 & 7\\ 3 & 5 \end{array}\right), \mathbf{B} = \left(\begin{array}{cc} 9 & -2\\ 6 & 8 \end{array}\right)$$

10. Define inner product in \mathbb{R}^n

Section B

- 11. Evaluate $\int x^2 \sqrt{x-1} dx$
- 12. Find the total area between the curve $y = 1 x^2$ and the x-axis over the interval [0,2]

13. Evaluate $\int e^x \cos x dx$.

14. Find the arc length of the curve $y = x^{3/2}$ from (1,1) to $(2,2\sqrt{2})$

15. Evaluate
$$\int \frac{dx}{x^2 + x - 2}$$

16. Let $f(x,y) = x^2y + 5y^3$.

- (a) Find the slope of the surface z = f(x, y) in the x-direction at the point (1, -2).
- (b) Find the slope of the surface z = f(x, y) in the *y*-direction at the point (1, -2).

17. Use Gauss-Jordan elimination to solve

$$x_1 + 3x_2 - 2x_3 = -7$$

$$4x_1 + x_2 + 3x_3 = 5$$

$$2x_1 - 5x_2 + 7x_3 = 19$$

18. Evaluate $\int_{-1}^{1} |e^x - 1| dx$

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

19. Find the area of the region enclosed by $x = y^2$ and y = x - 220. Find the eigenvalues and eigenvectors of

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025 MAT2MN103: ANALYSIS AND SOME COUNTING PRINCIPLES

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Write the first five terms of the sequence $\{a_n\}$, where $a_n = (-1)^{n+1} (\frac{2}{n})$.
- 2. Give an example of a bounded sequence which is neither monotone nor convergent.
- 3. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2}{4n^2-1}$
- 4. Write the number $2i^3 3i^2 + 5i$ in the form a + ib,
- 5. Find the polar form of the complex number $z = -\sqrt{3} 1$.
- 6. Sketch the graph of the equation |z + 3i = 2| in the complex plane.
- 7. Evaluate $\lim_{z \to 2i} (z^2 \overline{z}).$
- 8. Show that the function $f(z) = z^2 iz + 3 2i$ is continuous at the point $z_0 = 2 i$.
- 9. How many distinguishable permutations of the letters in the word "BANANA" are there?
- 10. Show that $nC_r = nC_{n-r}$.

Section B

- 11. Show that the Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots$ converges.
- 12. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2^{n}+1}{5^{n}+1}$.
- 13. Find the four fourth roots of z = 1 + i.
- 14. Use formal definiton to find the derivative of $f(z) = z^2 5z$.
- 15. Verify Cauchy-Riemann Equations for the polynomial function $f(z) = z^2 + z$.
- 16. Find the harmonic conjugate of the function $u(x, y) = x^3 3xy^2 5y$.

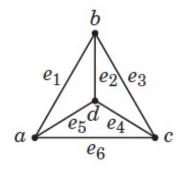
- 17. If n pigeons are assigned to m pigeonholes, then prove that one of the pigeonholes must contain at least $\lfloor (n-1)/m \rfloor + 1$ pigeons.
- 18. Suppose that two cards are selected at random from a standard 52-card deck. What is the probability that both cards are less than 10 and neither of them is red ?

Section C

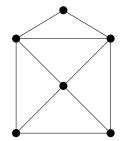
Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a). State Alternating Series Test.
 - (b). Prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges conditionally.
- 20. (a). Find the real and imaginary parts u and v of the complex function $f(z) = z^3 2z + 6$ as functions of x and y.
 - (b). Show that the function f(z) = x + 4iy is not differentiable at any point z.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025 MAT2MN104: GRAPH THEORY AND AUTOMATA

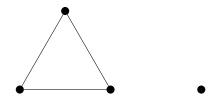

(Credits: 4)

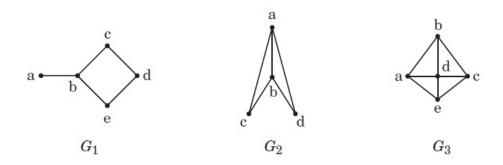
Time: Two Hours


Maximum: 70 Marks

Section A

- 1. Define a simple graph. Give a simple graph with 4 vertices.
- 2. Is a graph with four vertices a, b, c and d with deg(a) = 3, deg(b) = 4, deg(c) = 2 and deg(d) = 4 possible ?
- 3. Draw the complete bipartite graph $K_{3,3}$.
- 4. Define planar graph. Give example.
- 5. Consider the following graph G


- (a). Find a path in G
- (b). Find a cycle in G
- (c). Give an independent set for G
- 6. Define Eulerian path and Hamiltonian Path.
- 7. Define a tree. Give example.
- 8. Verify Euler's formula for the following graph.


- 9. Compute the length of the word a^3b^2 over {a, b}
- 10. What are the characteristics of a finite state automaton(FSA)?

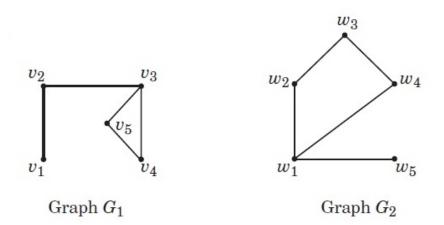
Section B Answer any number of questions Each question carries 6 marks Overall Ceiling 36

- 11. Draw K_4 . Label its vertices and draw its adjacency matrix.
- 12. Let *e* denote the number of edges of a graph *G* with *n* vertices $v_1, v_2, ..., v_n$. Then prove that $\sum_{i=1}^n \deg(v_i) = 2e$.
- 13. (a). Define a connected graph.
 - (b). Give an example for a connected graph.
 - (c). Is the following graph connected? Justify your answer.

14. Determine if each graph in the following figure has an Eulerian path. If so, find it.

15. Find the chromatic number of the cycle graph C_n .

16. Prove that every connected graph has a spanning tree.


- 17. Let $\sum = \{0, 1\}, A = \{0, 01\}$, and $B = \{\lambda, 1, 110\}$. Find the concatenations AB and BA.
- 18. Create a grammar to produce $\{a^nba \mid n \ge 1\}$ over $\{a, b\}$

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

19. (a). Cosider the following graph. Find the degree of each of its vertices.

(b). Determine whether the following graphs G_1 and G_2 are isomorphic.

- 20. (a). A connected planar graph has 17 edges, dividing the plane into 9 regions. How many vertices does the graph have?
 - (b). Prove that the complete graph K_5 is nonplanar.
 - (c). Prove that $K_{3,3}$ is nonplanar.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025

MAT2MN105: VECTOR SPACES AND LINEAR TRANSFORMATIONS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Give an example for a subset of \mathbb{R}^2 that is not a subspace of \mathbb{R}^2
- 2. Give a geometric description to the solution set of $\begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- 3. Use the Wronskian to show that $f_1 = x, f_2 = sinx$ are linearly independent vectors in $C^{\infty}(-\infty, \infty)$
- 4. Find the coordinate vector of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ relative to the standard basis for M_{22}
- 5. Explain why the vectors $\mathbf{u} = (-3, 7)$ and $\mathbf{v} = (5, 5)$ form a basis for \mathbb{R}^2
- 6. Use matrix multiplication to find the reflection of (-1,2) about the line y = x
- 7. Discuss the geometric effect on the unit square of multiplication by a diagonal matrix $A = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$ in which the entries k_1 and k_2 are positive real numbers $(\neq 1)$
- 8. Find the eigenvalues of $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$
- 9. find the orthogonal projection of the vector $\mathbf{x} = (1, 5)$ onto the line through the origin that makes an angle of $\frac{\pi}{6}$ with the positive x-axis
- 10. Show that the matrices $A = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 3 & -2 \end{bmatrix}$ are not similar.

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

11. Determine whether the vectors $\mathbf{u} = (1, 1, 2), \mathbf{v} = (1, 0, 1), \mathbf{w} = (2, 1, 3)$ span the vector space R^3

- 12. Determine whether the vectors $\mathbf{u} = (1, 2, 2, -1), \mathbf{v} = (4, 9, 9, -4), \mathbf{w} = (5, 8, 9, -5)$ in \mathbb{R}^4 are linearly dependent or linearly independent
- 13. Show that the vectors $\mathbf{u} = (1, 2, 1), \mathbf{v} = (2, 9, 0), \mathbf{w} = (3, 3, 4)$ form a basis for \mathbb{R}^3
- 14. Find a basis for the solution space of the homogeneous linear system, and find the dimension of that space $x_1 + x_2 x_3 = 0$

 $\begin{array}{c} x_1 + x_2 & x_3 = 0 \\ -2x_1 - x_2 + 2x_3 = 0 \\ -x_1 + x_3 = 0 \end{array}$

- 15. Use matrix multiplication to find the image of the vector (2, -1, 2) if it is rotated 30° counterclockwise about the positive x-axis.
- 16. Show that the operator $T: R^2 \leftarrow R^2$ defined by the equations $w_1 = 2x_1 + x_2$ $w_2 = 3x_1 + 4x_2$ is one-to-one, and find $T^{-1}(w_1, w_2)$
- 17. Find bases for the eigenspaces of $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
- 18. Show that composition of rotation is commutative

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

19. Let V be the set of 2×2 matrices with real entries. Show that V is a vector space under matrix addition and scalar multiplication

20. Let $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$

- (a) Find the eigenvalues of A
- (b) For each eigenvalue λ , find the rank of the matrix $\lambda I A$
- (c) Is A diagonalizable? Justify your conclusion

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT2MN106 - OPTIMIZATION TECHNIQUES IN ECONOMICS

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Define Gini Coefficient.
- 2. Define Global maxima and minima.
- 3. What is a non negativity constraints?
- 4. What is an open input-output model?
- 5. Explain discriminating monopolist.
- 6. What is an Exogenous variable?
- 7. Explain the Leontief production.
- 8. State the Young's theorem.
- 9. What is a constrained optimization?
- 10. Define Lorenz curve.

Section B

- 11. From the data points, find the equation of the line which best fits the data points (1,2), (3,4), (5,3) and (6,6)
- 12. Find the value of the Jacobian determinant from the following two functions; $y_1 = 2x_1 + 3x_2$ and $y_2 = 4x_1^2 + 12x_1x_2 + 9x_2^2$
- 13. Show whether the following function $x^4 + x^2 + 6xy + 3y^2$ has global minima or maxima.
- 14. Explain the major causes of income inequality.
- 15. Examine whether the input-output system with the following co-efficient matrix is feasible: $\begin{bmatrix} 1/2 & 3/5 \\ 1/3 & 5/7 \end{bmatrix}$

- 16. Present the Kuhn-Tucker formulation for a constrained minimization problem.
- 17. Explain the Hawkins Simon conditions.
- 18. Explain the significance of explicit functions form \mathbb{R}^n to \mathbb{R}^m .

Section C Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. Explain the determination of equilibrium prices in an economy with two sectors using inputoutput model.
- 20. Explain the method of least squares and derive the normal equations.

II Semester B.Sc. (CUFYUGP) Degree Examinations April 2025 MAT2VN101 : Linear Algebra for Machine Learning

(Credits: 4)

Maximum Time : 2 Hours

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Explain the idea of elimination in solving a system of linear equations.
- 2. Solve the following system using matrix notation:

$$\begin{cases} 2x + 3y = 5\\ 4x - y = 1 \end{cases}$$

- 3. State the rules for matrix addition and scalar multiplication.
- 4. Given a 2×2 matrix A, find its inverse if it exists:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

5. Write the factorization A = LU for the following matrix:

$$A = \begin{pmatrix} 2 & 1\\ 6 & 5 \end{pmatrix}$$

- 6. Define the transpose of a matrix and provide an example.
- 7. Determine the nullspace of the matrix A:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \end{pmatrix}$$

8. Define rank and compute the rank of the following matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$

- 9. What is the dimension of the row space of a matrix?
- 10. Explain the concept of orthogonality between two vectors.

Section B [Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

Maximum Marks : 70

11. Find the least squares approximation of the overdetermined system:

$$\begin{cases} x+y=2\\ x+2y=3\\ x+3y=5 \end{cases}$$

12. Apply the Gram-Schmidt process to orthogonalize the set of vectors:

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

13. Compute the eigenvalues of the following matrix:

$$A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$

14. Diagonalize the matrix A if possible:

$$A = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$

- 15. Prove that a symmetric matrix has real eigenvalues.
- 16. Determine if the following matrix is positive definite:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

- 17. Show that similar matrices have the same eigenvalues.
- 18. Perform Singular Value Decomposition (SVD) for the matrix:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

19. Find the complete solution to the system Ax = b where:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ 1 & 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

20. Discuss the Singular Value Decomposition (SVD) of a matrix. Provide an example and explain how it can be used in applications such as data compression or noise reduction.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025 MAT2VN102: R PROGRAMMING

(Credits: 4)

Time: Two Hours

Maximum: 70 Marks

Section A

Answer any number of questions Each question carries **3** marks Overall Ceiling **24**

- 1. Discuss the different data types available in R. Provide examples of each data type.
- 2. Explain what vectors are in R.
- 3. Explain the use of the 'dplyr' package for data manipulation
- 4. Explain the basics of creating plots using the 'ggplot2' package in R
- 5. How to import CSV data in R
- 6. Explain the concepts of mean, median, standard deviation, and variance.
- 7. Explain the concept of hypothesis testing
- 8. Define machine learning
- 9. Discuss the chi-square test and its applications
- 10. Explain the different types of loops available in R

- 11. Explain how matrices and arrays are used in R. Write R code to create and perform operations on matrices and arrays.
- 12. Discuss the measures of dispersion: range, variance, and standard deviation. Write R code to calculate these measures for a given dataset.
- 13. Discuss the concept of probability distributions and random variables. Provide examples of different types of probability distributions available in R and how to generate random samples from them.

- 14. Describe simple linear regression and its applications. Provide R code to perform a simple linear regression analysis and interpret the results.
- 15. Describe the use of basic charts in data visualization. Explain how to create the following charts in R: Pie chart, Bar chart, Histogram, Boxplot, and Scatterplot.
- 16. Describe dimensionality reduction techniques
- 17. Explain the differences between supervised, unsupervised, and reinforcement learning.
- 18. Explain the ANOVA test and how it is used.

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. Describe how functions are defined and used in R. Write an example function that takes input arguments and returns a result.
- 20. Compare the challenges and benefits of applying machine learning in HR, finance, and marketing domains.

Second Semester B.Sc. (CUFYUGP) Degree Examinations April 2025 MAT2FM106(1):GRAPH THEORY AND LPP

(Credits: 3)

Maximum Time : 1.5 Hours

Maximum Marks : 50

Section A

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. Define a graph and give an example.
- 2. Draw the graphs K_4 and $K_{2,3}$
- 3. Draw any two spanning subgraphs of K_5 with at least 6 edges.
- 4. Define walk, trail and cycle in a graph.
- 5. Define bridge in a graph and give an example.
- 6. State the Whitney's theorem.
- 7. Define linear inequality in two variables.
- 8. Graph the linear inequality $2x 3y \le 12$.
- 9. Write the standard maximization form of a LPP
- 10. Define basic feasible solution of a LPP

Section B [Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. Prove that in a graph G there is an even number of odd degree vertices.
- 12. Let G be an acyclic graph with n vertices and k connected components. Show that G has n k edges.
- 13. Solve the following LPP

Minimize z = 2x + 4ysubject to $x + 2y \ge 10$ $3x + y \ge 10$ $x \ge 0, y \ge 0$

14. Andrew Crowley plans to start a new business called River Explorers, which will rent canoes and kayaks to people to travel 10 miles down the Clarion River in Cook Forest State Park. He has \$45,000 to purchase new boats. He can buy the canoes for \$600 each and the kayaks for \$750 each. His facility can hold up to 65 boats. The canoes will rent for \$25 a day, and the kayaks will rent for \$30 a day. How many canoes and how many kayaks should he buy to earn the most revenue if all boats can be rented each day?

15. Write the dual of linear programming problem

Section C [Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

- 16. If G is a connected graph with n vertices and n-1 edges, then show that G is tree.
- 17. Use Simplex method to solve

Minimize	$w = 3y_1 + 2y_2$		
subject to	y_1	$+3y_{2}$	≤ 6
	$2y_1$	$+y_{2}$	≥ 3
	Į	$y_1 \ge 0,$	$y_2 \ge 0$

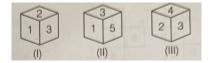
Second Semester B.Sc. (CUFYUGP) Degree Examinations April 2024 MAT2FM106(2):MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART II

(Credits: 3)

Maximum Time : 1.5 Hours

Maximum Marks : 50

Section A


[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. DI is related to 49, in the same way FD is related to —
- 2. What comes next in the series 5, 11, 23, 47, 95, ?
- 3. Daya has brother Anil, Daya is the son of Chandra, Bimal is Chandra's father. In terms of relationship, what is Anil to Bimal?
- 4. If South-West becomes North, then what will North-East be?
- 5. Complete the second pair in the same way as the first pair.

Ρ	М	Ь	M	K	N	Sill 4
R	S	R	s	L	В	>?

- 6. By looking in a mirror, it appears that it is 6:30 in the clock. What is the real time.
- 7. The ratio of an interior angle to the exterior angle of a regular polygon is 5:1. What is the number of sides in the polygon.
- 8. Which number is opposite to face 3?

- 9. Write the wrong term in the series P3C, R5F, T9I, V12L ...
- 10. Draw the Venn diagram which represents week, day and year

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. In a certain code, SOBER is written as RNADQ. How LOTUS can be written in that same code?
- 12. Rishabh starts from point A and travels 4 Km in North direction to reach point B, Now he turns towards South-East and travels 5 Km to reach point C and finally he turns towards North and travels another 4 Km to reach point D. Calculate the shortest distance between points A and D and in which direction is point A with respect to point D?
- 13. Count the number of triangles and squares in the given figure.

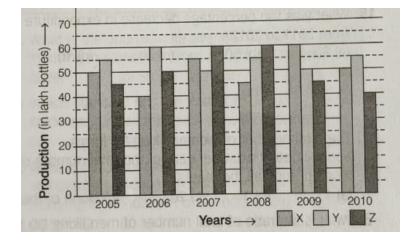
- 14. (A) A statement is given followed by three arguments. Choose the answer **Statement** : All scientists working in America are talented. Some are Indian **Conclusions**
 - 1. None of the Indian scientists is talented
 - 2. Some talented Indian scientists have migrated
 - 3. All talented scientists are in America
 - 4. Some indian scientists are talented
 - a) Only conclusion 1 b) Only conclusion 2 c) Only conclusion 3 d) Conclusions 2 and follows follows follows 4 follows

(B) Some statements and conclusions are given. Choose the conclusions which are logically follows from the given statements. **Statements**

Statements

All dogs are rats

All rats are crows


All crows are parrots

Conclusions

- 1. All dogs are parrots
- 2. Some parrots are dogs
- 3. Some crows are dogs
- 4. All rats are dogs
- a) Only conclusion 1 b) Conclusions 1 and c) Conclusions 1,2 and d) Only conclusion 4 follows 2 follows 3 follows follows
- 15. If in a row, Rohan is 10th from left and Mukesh is 13th from right and there are four persons in between them, then find the maximum and minimum number of persons in the row.

Section C [Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

16. The production of three different flavours X,Y and Z by a company is shown in the Bar Chart.

(A) The total production of flavour Z in 2007 and 2008 is what percent of the total production of flavour X in 2005 and 2006?

- (B) For which flavour was the average annual production maximum in the given period.
- 17. (A) Arathi and Subhash are the children of Mr. and Mrs. Shah. Ritu and Sakthi are the children of Mr. and Mrs. Mehra. Sourabh and Ritu are married to each other and two daughters Mukthi and Sruthi are born to them. Sakthi is married to Reena and two children Subhash and Reshma are born to them. How Arathi related to Sruthi.

(B) A boy rode his bicycle Northwards, then turned left and rode 1 Km and again turned left and rode 2 Km. He found himself exactly 1 Km West of his starting point. How far did he ride Northwards initially?